Эти задания наиболее сложные. Они предполагают неоднократные преобразования образа фигуры и по положению, и по структуре одновременно, что приводит к созданию нового геометрического образа. Подобные задания хорошо развивают пространственное мышление, подготавливают учащихся к решению целого ряда конструктивно-технических (технологических) задач, что особенно важно для обеспечения единой линии развития пространственное мышления в системе непрерывного образования (особенно технического).
К сожалению, эти задания используются на уроках очень мало, учителя их относят к заданиям повышенной трудности. С их помощью проверяется возможность ученика последовательно осуществлять мысленные преобразования образа, изменяющие его пространственное положение и структуру. Эти преобразования могут осуществляться по отношению к структуре замкнутой фигуры (ее внутреннего пространства), а могут изменять ее положение и структуру по отношению к другим фигурам (ее внешнее пространство).
Описанные задания на все три типа оперирования геометрическими образами отличаются тем, что в них и создаваемый исходный образ, и его видоизменения осуществляются в уме, без опоры на чертеж, что придает им диагностическую ценность. С помощью таких заданий можно установить, как ученик оперирует образом, что его особенно затрудняет. При этом удается оценить не только, какой образ возникает, но и как он создается и преобразуется каждым учеником. Использование этих заданий в практике экспериментального обучения показало, в частности, что при создании образа (оперировании им) ученики используют различные способы:
1) отображение фигуры по отдельным элементам (точкам, отрезкам) и их последующее объединение;
2) отображение сначала одного, целостного элемента (прямая, луч, полуплоскость) и последовательное «достраивание» в уме остальных элементов;
3) оперирование целостным образом фигуры и экстраполяция искомого результата.
Если тот или иной способ (его использование) носит устойчивый характер (что легко проверить при предъявлении серии заданий), можно говорить об индивидуальных проявлениях способов работы с образом и по ним судить об уровне развития пространственное мышления. Отметим, что при использовании каждого способа можно правильно решить задачу, но с точки зрения оценки пространственное мышления эти способы не равнозначны.
Для выявления тех способов создания образов, которыми фактически пользуются ученики, можно (особенно в старших классах) использовать такой прием: после того, как задача решена, предложить рассказать о том, какие действия по преобразованию образа геометрической фигуры были использованы. Ученики с удивлением узнают, что, решая одну и ту же задачу, они применяли разные способы мысленного «видения» геометрической фигуры. Такой методический прием имеет большое не только диагностическое, но и развивающее значение.
Пример 9: Докажите, что середины сторон пространственного четырехугольника являются вершинами параллелограмма (рис. 10).Решение: Целесообразно рассматривать фигуру с разных сторон: каждые две пересекающиеся прямые задают плоскость (аксиома задания плоскости) → треугольник → параллельность и равенство противолежащих сторон параллелограмма из свойства средней линии треугольника → A1B1C1D1 – параллелограмм (по определению).
Эффективность учебно-воспитательного процесса во многом зависит от умения учащихся самостоятельно получать и применять знания. Проблема методики формирования умений самостоятельной работы учащихся является актуальной для каждого преподавателя математики. Преподавание геометрии дает возможность в наибольшей степени развить у учащихся умение самостоятельной работы, особенно при решении задач. У учащихся необходимо формировать различные способы создания образов и оперирования ими.
Задания на создание геометрических образов используются в трех видах:
1. создание наглядного образа;
2. изменение чертежа, заданного в готовом виде, в ходе решения задачи;
3. мысленное видоизменение чертежа (по воображению) без изменения его исходного вида.
Для того, чтобы развивать у учащихся умение самостоятельно решать геометрические задачи, необходимо иметь дидактические материалы (задачи, упражнения), в которых бы учитывались особенности создания пространственных образов и оперирование ими.
Знание учителем конкретных особенностей создания учеником геометрических образов позволяет ему успешно проводить коррекционную работу, развивать пространственное мышление ученика в нужном направлении.
Далее разработана серия дидактических задач на разновидности «создания образа» по чертежу по теме: «Параллельность в пространстве». Задачи разбиты по типам урока: изучение нового материала; применение знаний, умений и навыков; проверка знаний, умений и навыков. Серия задач содержит задания на перевод словесных данных задачи в графический образ; выделение существенных признаков геометрических понятий; вычленение фигуры из состава чертежа; сравнение фигур (преобразование подобия); рассмотрение фигур чертежа с разных точек зрения; видоизменение пространственного положения, структуры исходного образа.
Все задачи даются в словесной формулировке для того, чтобы выявить у учащихся умение создавать пространственный образ по словесному описанию, уравнивания при этом исходные условия создания образа. К каждой задаче указаны применяемые определения, признаки, свойства геометрических понятий.
Изучение темы «Параллельность в пространстве» можно разделить на 3 части:
1. параллельность прямых;
2. параллельность прямой и плоскости;
3. параллельность плоскостей.
1.01. Сделайте чертеж: Прямая MP параллельна плоскости α, а прямая МТ пересекает эту плоскость в точке Т (рис. 11).
1.02. Сделайте чертеж: Плоскость α пересекает три параллельные прямые a, b и c соответственно в точках А, В и С, принадлежащих одной прямой (рис. 12).
1.03. Сделайте чертеж: Плоскость α пересекает три параллельные прямые a, b и c соответственно в вершинах ∆АВС (рис. 13).
1.04. Нарисуйте куб ABCDA1B1C1D1 (рис. 14). 1) Выделите в нем ребро ВВ1 и назовите все ребра куба: а) параллельные ему; б) пересекающие его; в) скрещивающиеся с ним. 2) Выделите диагональ AD1 грани ADA1D1 куба и назовите диагонали граней: а) параллельные AD1; б) пересекающие ее; в) скрещивающиеся с ней. Ответ обоснуйте.
2.01. Сделайте чертеж: Плоскость α проходит через середины сторон АВ и АС треугольника АВС и не содержит вершины А (рис. 15).
2.02. Сделайте чертеж: Прямая MP параллельна плоскости α, а плоскость РМТ пересекает эту плоскость по прямой КТ (рис. 16).
2.03. Сделайте чертеж: Прямая а параллельна каждой из параллельных плоскостей α и β (рис. 17).
2.04. Известно, что прямая m параллельна плоскости α. Параллельна ли эта прямая любой прямой, лежащей в этой плоскости α (рис. 18)? Ответ обоснуйте.
Решение: Пусть прямая а принадлежит плоскости α. Выберем на прямой m произвольно точку М и проведем через нее и прямую а плоскость β (аксиома задания плоскости). Прямые m и а не пересекаются (по условию), тогда они либо параллельны (
), либо скрещиваются ( ). Следовательно, прямыми, параллельными прямой m, будут только те, с помощью которых можно задать плоскость (при участии m).2.06. Даны две скрещивающиеся прямые а и b (рис. 19). Через каждую точку прямой а проводится прямая, параллельная прямой b. Докажите, что все такие прямые лежат в одной плоскости. Как расположена эта плоскость по отношению к прямой b? Ответ обоснуйте.
Решение: Пусть m || b ,
, тогда m и а задают плоскость α. Возьмем в плоскости α прямую с || b. По признаку параллельности прямых: с || m, тогда они задают некоторую плоскость β. По условию , значит, они тоже задают плоскость, которая совпадает с α. Следовательно, все прямые, параллельные b и пересекающие а лежат в плоскости, которая в свою очередь параллельна b (по признаку параллельности прямой и плоскости).2.07. В тетраэдре ABCD точки K, F, N и M – середины ребер соответственно AD, BD, BC и AC (рис. 20). Заполните таблицу, выбрав (обведя в кружок) определенное вами расположение указанных прямой и плоскости: А – пересекаются, Б – параллельны, В – прямая лежит в плоскости, Г – невозможно определить: