Смекни!
smekni.com

Использование образовательной технологии "Школа 2100" в обучении математике младших школьников (стр. 13 из 15)

— Что понравилось? Что было трудно?

9. Домашнее задание.

1) №№ 8, 10, с. 82 — в тетради в клетку.

2) По выбору: 9 или 11 на с.82 — на печатной основе.


Тема: РЕШЕНИЕ ЗАДАЧ.

2 класс, 4 ч. (1 — 3).

Цель: 1) Научить решать задачи по сумме и разности.

2) Закрепить вычислительные навыки, составление бук­венных выражений к текстовым задачам.

3) Развивать внимание, мыслительные операции, речь, коммуникативные способности, интерес к математике.

Ход урока:

1. Организационный момент.

2. Постановка учебной задачи.

2.1. Устные упражнения.

Класс разбит на 3 группы — “команды”. По одному представителю от каждой команды выполняет индивидуальное задание на доске, остальные дети работают фронтально.

Фронтальная работа:

—Уменьшите число 244 в 2 раза (122)

— Найдите произведение 57 и 2 (114)

— Число 350 уменьшите на 230 (120)

— На сколько 134 больше 8? (126)

— Число 1280 уменьшите в 10 раз (128)

— Чему равно частное 363 и 3? (121)

— Сколько сантиметров в 1 м 2 дм 4 см? (124)

Расположите полученные числа в порядке возрастания:

114 120 121 122 124 126 128
З А Й Ч А Т А

— Какое число можно считать лишним в этом ряду? (120 — отсут­ствует разряд единиц; 121 — нечетное; 114 — количество десятков 1, а в других — 2.)

Индивидуальная работа у доски:

Три зайчишки-плутишки получили в день рождения подарки. Посмотрите, нет ли среди них одинаковых подарков? (Дети находят примеры с одинаковыми ответами).

I II III


— Какие числа остались без пары? (Число 7.)

— Дайте характеристику этому числу. (Однозначное, нечетное, кратное 1 и 7.)

2.2. Постановка учебной задачи.

Каждая команда получает по 4 задачи “Блиц-турнира”, табличку и схему.

“Блиц-турнир”

а) Одна зайчиха нацепила а колец, а другая — на 2 кольца больше, чем первая. Сколько колец у обеих?

б) У мамы-зайчихи было а колец. Она дала трем дочкам по b ко­лец. Сколько колец у нее осталось?

в) Было а колец красных, b колец белых и сколец розовых. Их раз­дали 4 зайчихам поровну. По скольку колец получила каждая зайчиха?

г) У мамы-зайчихи было а колец. Она раздала их двум дочкам так, что у одной из них получилось на n колец больше, чем у другой. По скольку колец получила каждая дочка?


У I команды:


У II команды:


У III команды:

—Среди зайчих стало модно носить в ушах кольца. Прочитайте задачи на своих листочках и определите, к какой задаче подходит ваша схема и ваше выражение?

Учащиеся обсуждают задачи в группах, совместно находят ответ. По одному человеку от группы “защищает”мнение команды.

— К какой задаче я не подобрала схему и выражение?

— Какая из данных схем подойдет к четвертой задаче?

— Составьте выражение к этой задаче. (Дети предлагают различ­ные варианты решения, одно из них — а: 2.)

— Верно ли это решение? Почему нет? При каком условии мы мог­ли бы считать его правильным? (Если бы количество колец у обеих зайчих было равным.)

— Мы встретились с новым типом задач: в них известна сумма и разность чисел, а сами числа — неизвестны. Наша задача сегодня -научиться решать задачи по сумме и разности.

3. “Открытие” нового знания.

Рассуждения детей обязательносопровождаются предмет­ными действиями детей с полосками.

—Положите перед собой полоски цветной бумаги, как это показа­но на схеме:

Объясните, какой буквой обозначена на схеме сумма колец? (Бук­вой а.) Разность колец? (Буквой n.)

—Нельзя ли уравнять количество колец у обеих зайчих? Как это сделать? (Дети отгибают или отрывают часть длинной полоски так, чтобы оба отрезка стали равными.)

— Как записать выражением, сколько стало колец? (а-n)

— Это удвоенное меньшее или большее число? (Меньшее.)

— Как же найти меньшее число? ((а-n): 2.)

— Мы ответили на вопрос задачи? (Нет.)

— Что еще должны узнать? (Большее число.)

— Как найти большее число? (Добавить разницу: (а-n): 2 + n)

Таблички с полученными выражениями фиксируются на доске:

(а-n): 2 — меньшее число,

(а-n): 2 + nбольшее число.

— Мы сначала нашли удвоенное меньшее число. А как иначе мож­но было рассуждать? (Найти удвоенное большее число.)

— Как это сделать? (а + n)

— Как потом ответить на вопросы задачи? ((а + n): 2 — большее число, (а + n): 2-n — меньшее число.)

Вывод: Итак, мы нашли два пути решения таких задач по сумме и разности: найти сначала удвоенное меньшее число — вычитанием, либо найти сначала удвоенное большее число-сложением. На доске сопоставлены оба пути решения:

1 способ 2 способ

(а-n):2 (а + n):2

(a-n):2 + n (а + n):2 – n

4. Физкультминутка.

5. Первичное закрепление.

Учащиеся работают с учебником-тетрадью. Задания решаются с комментированием, решение записывается на печатной основе.

а) — Прочитайте про себя задачу 6 (а), стр. 7.

— Что нам известно в задаче и что нужно найти? (Нам известно, что в двух классах 56 человек, причем в 1 классе на 2 человека больше, чем во втором. Нам надо найти количество учащихся в каждом классе.)

— “Оденьте” схему и проанализируйте задачу. (Нам известна сумма — 56 человек, и разность — 2 ученика. Сначала мы найдем удвоенное меньшее число: 56 – 2 = 54 человека. Затем узнаем, сколько учащихся во втором классе: 54: 2 = 27 человек. Теперь узнаем, сколько учащих­ся в первом классе — 27 + 2 = 29 человек.)

— Как по-другому найти, сколько учащихся в первом классе? (56 – 27 = 29 человек.)

— Как проверить, правильно ли решена задача? (Сосчитать сумму и разность: 27 + 29 = 56, 29 – 27 = 2.)

— Как по-другому можно было решить задачу? (Найти сначала число учеников в первом классе, и из него вычесть 2.)

б) — Прочитайте про себя задачу № 6 (б), стр. 7. Проанализируйте, какие величины известны, а какие — нет и придумайте план решения.

После минутного рассуждения в командах выступает представи­тель той команды, которая раньше готова. Устно разбираются оба спо­соба решения задачи. После обсуждения каждого способа открывается готовый образец записи решения и сравнивается с ответом ученика:

I способ II способ

1) 18 – 4= 14 (кг) 1) 18 + 4 = 22(кг)

2) 14:2 = 7 (кг) 2) 22: 2 = 11 (кг)

3) 18 – 7 = 11 (кг) 3) 11 – 4 = 7 (кг)

6. Самостоятельная работа с проверкой в классе.

Учащиеся по вариантам решают на печатной основе задание № 7, стр. 7 (I вариант — № 7 (а), II вариант — № 7 (б)).

№ 7 (а), стр. 7.

I способ II способ

1) 248-8 = 240(м.) 1) 248 +8 = 256(м.)

2) 240:2=120(м.) 2) 256:2= 128 (м.)

3) 120 + 8= 128 (м.) 3) 128-8= 120(м.)

Ответ: 120 марок; 128 марок.

№ 7(6), стр. 7.

I способ II способ

1) 372+ 12 = 384 (отк.) 1) 372-12 = 360 (отк.)

2) 384:2= 192 (отк.) 2) 360:2= 180 (отк.)

3) 192 – 12 =180 (отк.) 3)180+12 = 192 (отк.)

Ответ: 180 открыток; 192 открытки.

Проверка — по готовому образцу на доске.

7. Решение задач на повторение.

Каждая команда получает табличку с заданием: “Найти законо­мерность и вписать вместо знаков вопроса нужные числа”.

1 команда:


2 команда:



3 команда:


Капитаны команд отчитываются о результатах работы команд.

8. Итог урока.

— Объясните, как вы рассуждаете при решении задач, если выполняются следующие операции:

9. Домашнее задание.

Придумайте свою задачу нового типа и решите ее двумя способами.


Тема: СРАВНЕНИЕ УГЛОВ.

4 класс, 3 ч. (1-4)

Цель: 1) Повторить понятия: точка, луч, угол, вершина угла (точка), стороны угла (лучи).

2) Познакомить учащихся со способом сравнения углов с помощью непосредственного наложения.

3) Повторить задачи на части, отрабатывать решение задач на нахождение части от числа.

4) Развивать память, мыслительные операции, речь, позна­вательный интерес, исследовательские способности.

Ход урока:

1. Организационный момент.

2. Постановка учебной задачи.

а) — Продолжите ряд:

1) 3, 4, 6, 7, 9, 10,...; 2) 2, ½, 3, 1/3,...; 3) 824, 818, 812,...

б) — Вычислите и расположите в порядке убывания:

[И] 60-8 [Л] 84-28 [Ф] 240: 40 [А] 15 — 6

[Г] 49 + 6 [У] 7 • 9 [Р] 560: 8 [Н] 68: 4

Зачеркните 2 лишние буквы. Какое слово получилось? (ФИГУРА.)

в) — Назовите фигуры, которые вы видите на рисунке:

Какие фигуры можно неограниченно продолжить? (Прямую, луч, стороны угла.)

Я соединяю центр окружности с точкой, лежащей на окружности, Что получилось? (Отрезок, называется радиусом.)

Какая из ломаных является замкнутой, а какая — нет?