Смекни!
smekni.com

Логические блоки Э. Дьенеша и палочки Х. Кюизенера (стр. 2 из 3)

Ориентируясь на примерный уровень развития ребенка, предложите ему одно—два упражнения (игры). Если он не справляется с заданием, предложите более простое (предыдущее) по сложности упражнение, и так до тех пор, пока ребенок не решит задачу. Самостоятельное и успешное решение и будет той ступенькой, от которой следует начать движение вперед.

Проверив таким образом каждого ребенка, вы получите достаточно ясную картину уровня мыслительных умений детей. А это даст возможность организовать занятия с учетом уровня развития каждого ребенка.

Если ребенок легко и безошибочно справляется с заданиями определенной ступени — это сигнал к тому, что ему следует предложить игры и упражнения следующей группы сложности. Однако переводить ребенка к последующим игровым упражнениям можно только в случае, если он "вырос" из предыдущих, т. е. когда они для него не составляют труда. Если же передержать детей на определенной ступени или преждевременно дать более сложные игры и упражнения, то интерес к занятиям исчезнет. Дети тянутся к мыслительным заданиям тогда, когда они для них трудноваты, но выполнимы.

Важно помнить, развивая мыслительные умения, что они, как и всякие другие умения, вырабатываются в процессе многократных упражнений. При этом количество этих упражнений для разных детей различно. Для того чтобы ребенок не потерял интерес к мыслительным заданиям, каждая игра и упражнение содержит несколько игровых И практических задач, которые можно предложить ребенку, например проложить дорожки между домиками Ниф-Нифа, Наф-Нафа и Нуф-Нуфа, смастерить новогоднюю гирлянду, построить мост через речку и т. д.

С этой же целью в каждом упражнении и игре даны несколько вариантов одной и той же по степени сложности мыслительной задачи. Например, построить дорожку так, чтобы рядом были одинаковые по цвету, но разные по форме блоки, или чтобы рядом были блоки одинаковой формы, но разного размера, или же чтобы рядом были фигуры разной толщины, но одинакового цвета.

В интеллектуальное путешествие по играм и упражнениям с логическими блоками ребенок может отправиться двумя маршрутами:


Для малышей 3—4 лет более удобен и эффективен маршрут А. Путь их будет долгим, так как они еще очень мало могут и умеют. Сначала они научатся оперировать одним, затем двумя свойствами. После этого научатся сравнивать, классифицировать и обобщать по ним предметы, кодировать и декодировать информацию об одном, двух признаках объектов, освоят элементарные алгоритмические умения. В старшем дошкольном возрасте дети овладеют логическими операциями, смогут рассуждать, доказывать правильность или ошибочность решения задачи, научатся оперировать сразу тремя свойствами.

Если малыши впервые отправляются в такое путешествие в 5—6 лет, то им больше подойдет маршрут Б. Они уже многое знают и умеют. Большинство первых и часть вторых вариантов игр и упражнений для них не составят труда, а явятся лишь предстартовыми площадками для решения более сложных задач.

Однако и здесь не следует забывать об индивидуальных особенностях детей. Возможно, кому-то из четырехлеток разумнее будет идти маршрутом Б, а кое-кто из старших дошкольников с большей пользой для себя пройдет маршрутом А. При этом очень важно, чтобы ребенок приступал к более сложной игре или ее варианту только тогда, когда самостоятельно справляется с задачами в предшествующей игре или в упражнении.

Интеллектуальное путешествие будет более увлекательным и радостным для детей, если, во-первых, всегда помнить о том, что взрослый должен быть равноправным участником игр или упражнений, способным, как и ребенок, ошибаться, и во-вторых, если не спешить указывать детям на ошибки, а предоставлять им возможность исправлять их самим.

Прежде чем приступить к играм и упражнениям, предоставьте детям возможность самостоятельно познакомиться с логическими блоками. Пусть они используют их по своему усмотрению в разных видах деятельности. В процессе разнообразных манипуляций с блоками дети установят, что они имеют различную форму, цвет, размер, толщину. Заострять внимание детей на термине "блок" не имеет смысла. Ведь в восприятии ребенка блок прежде всего носитель формы, т. е. геометрическая фигура. Поэтому в общении с детьми целесообразнее пользоваться словом "фигура", хотя вполне допустимо и использование слова "блок".

В целях более эффективного ознакомления детей со свойствами логических блоков можно предложить им следующие задания:

/найди такие же фигуры, как эта, по цвету (по форме, по размеру, по толщине);

/найди не такие фигуры, как эта, по форме (по размеру, по толщине, по цвету);

/найди синие фигуры (треугольные, красные, квадратные, большие, желтые, тонкие, толстые, маленькие, круглые, прямоугольные);

/назови, какая эта фигура по цвету (по форме, по размеру, по толщине).

После такого самостоятельного знакомства с блоками можно перейти к играм и упражнениям.

Игры и упражнения с логическими блоками вы можете предлагать детям на занятиях и в свободные часы, как в детском саду, так и дома. Если вы дополните их другими развивающими играми и игровыми заданиями, "насытите" новыми игровыми задачами, действиями, сюжетами, ролями и пр., то этим только поможете детям преодолевать интеллектуальные трудности.

Палочки Кюизенера

Во всем мире широко известен дидактический материал, разработанный бельгийским математиком X. Кюизенером. Он предназначен для обучения математике и используется педагогами разных стран в работе с детьми, начиная с младших групп детского сада и кончая старшими классами школы. Палочки Кюизенера называют еще цветными палочками, цветными числами, цветными линеечками, счетными палочками.

Основные особенности этого дидактического материала — абстрактность, универсальность, высокая эффективность. Палочки Кюизенера в наибольшей мере отвечают монографическому методу обучения числу и счету.

Числовые фигуры, количественный состав числа из единиц и меньших чисел — эти неизменные атрибуты монографического метода, как, впрочем, и идея автодидактизма, оказались вполне созвучными современной дидактике детского сада. Палочки легко вписываются сейчас в систему предматематической подготовки детей к школе как одна из современных технологий обучения.

Эффективное применение палочек Кюизенера возможно в сочетании с другими пособиями, дидактическими материалами (например, с логическими блоками), а также и самостоятельно. Палочки, как и другие дидактические средства развития математических представлений у детей, являются одновременно орудиями профессионального труда педагога и инструментами учебно-познавательной деятельности ребенка. Велика их роль в реализации принципа наглядности, представлении сложных абстрактных математических понятий в доступной малышам форме, в овладении способами действий, необходимых для возникновения у детей элементарных математических представлений. Важны они для накопления чувственного опыта, постепенного перехода от материального к материализованному, от конкретного к абстрактному, для развития желания овладеть числом, счетом, измерением, простейшими вычислениями, решения образовательных, воспитательных, развивающих задач и т.д.

Палочки Кюизенера как дидактическое средство в полной мере соответствуют специфике и особенностям элементарных математических представлений, формируемых у дошкольников, а также их возрастным возможностям, уровню развития детского мышления, в основном наглядно-действенного и наглядно-образного. В мышлении ребенка отражается прежде всего то, что вначале совершается в практических действиях с конкретными предметами. Работа с палочками позволяет перевести практические, внешние действия во внутренний план, создать полное, отчетливое и в то же время достаточно обобщенное представление о понятии.

Возникновение представлений как результат практических действий детей с предметами, выполнение разнообразных практических (материальных и материализованных) операций, служащих основой для умственных действий, выработка навыков счета, измерения, вычислений создают предпосылки для общего умственного и математического развития детей.

С математической точки зрения палочки — это множество, на котором легко обнаруживаются отношения эквивалентности и порядка. В этом множестве скрыты многочисленные математические ситуации. Цвет и величина, моделируя число, подводят детей к пониманию различных абстрактных понятий, возникающих в мышлении ребенка как результат его самостоятельной практической деятельности ("самостоятельного математического исследования").

Использование "чисел в цвете" позволяет развивать у дошкольников представление о числе на основе счета и измерения.

К выводу, что число появляется в результате счета и измерения, дети приходят на базе практической деятельности. Как известно, именно такое представление о числе является наиболее полноценным.

С помощью цветных палочек детей также легко подвести к осознанию соотношений "больше—меньше", "больше—меньше на...", познакомить с транзитивностью как свойством отношений, научить делить целое на части и измерять объекты, показать им некоторые простейшие виды функциональной зависимости, поупражнять их в запоминании числа из единиц и двух меньших чисел, помочь овладеть арифметическими действиями сложения, вычитания, умножения и деления, организовать работу по усвоению таких понятий, как "левее", "правее", "длиннее", "короче", "между", "каждый", "какой-нибудь", "быть одного и того же цвета", "быть не голубого цвета", "иметь одинаковую длину" и др. С помощью палочек Кюизенера можно еще в детском саду познакомить детей с арифметической прогрессией, своеобразной "цветной алгеброй", готовящей к изучению школьной алгебры.