Смекни!
smekni.com

Математические понятия (стр. 2 из 4)


2.3 Характеристика основных типов ошибок

Отметим типичные ошибки, которые встречаются у учащихся при определении понятий:

1) использование не минимального множества в качестве определяющего, включение логически зависимых свойств (характерно при повторении материала).

Например: а) параллелограмм – четырёхугольник, у которого противоположные стороны равны и параллельны; б) прямая называется перпендикулярной к плоскости, если она, пересекаясь с этой плоскостью, образует прямой угол с каждой прямой, проведённой на плоскости через точку пересечения, вместо: “прямая называется перпендикулярной к плоскости, если она перпендикулярна ко всем прямым этой плоскости”;

2) использование определяемого понятия и в качестве определяющего.

Например, определяется прямой угол не как один из равных смежных углов, а как углы с взаимно перпендикулярными сторонами;

3) тавтология – определяется понятие через само это понятие.

Например, две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия;

4) иногда в определении указывается не то определяющее множество, из которого выделяется определяемое подмножество.

Например, “медиана есть прямая …” вместо ”медиана есть отрезок, соединяющий…”;

5) в определениях, даваемых учащимися, иногда совсем отсутствует определяемое понятие, что возможно лишь тогда, когда учащиеся не приучены давать полные ответы.

Методика исправления ошибок в определениях предполагает, первоначально, выяснения сути допущенных ошибок, а затем предупреждение их повторения.

3. Структура определения

Знание определения не гарантирует усвоения понятия. Методическая работа с понятиями должна быть направлена на преодоление формализма, который проявляется в том, что учащиеся не могут распознать определяемый объект в различных ситуациях, где он встречается.

Распознавание объекта, соответствующего данному определению, и построение контрпримеров возможно лишь при ясном представлении о структурах рассматриваемого определения, под которой в схеме определения (

) понимают структуру правой части.

1) Конъюнктивная структура: две точки

и
называются симметричными относительно прямой p(A(x)), если эта прямая p перпендикулярна отрезку
и проходит через его середину. Будем также считать, что каждая точка прямой р симметрична себе относительно прямой р (наличие союза “и”) (* - “Биссектрисой угла называется луч, который исходит из его вершины, проходит между его сторонами и делит угол пополам”).

2) Конструктивная структура: “Пусть

- данная фигура и р – фиксированная прямая. Возьмём произвольную точку
фигуры и опустим перпендикуляр
на прямую р. На продолжение перпендикуляра за точку
отложим отрезок
, равный отрезку
. Преобразование фигуры
в фигуру
, при котором каждая точка
переходит в точку
, построенную указанным образом, называют симметрией относительно прямой р.”

3) Дизъюнктивная структура: определение множества Zцелых чисел можно записать на языке свойств в виде

Z
Nили
N
или
=0, где N
- множество чисел, противоположных натуральным.

4. Характеристика основных этапов изучения математических понятий

Методика работы над определением предполагает: 1) знание определения; 2) обучение распознавания объекта, соответствующего данному определению; 3) построение различных контрпримеров. Например, понятие “прямоугольный треугольник” и работа по распознаванию его составных элементов:


Изучение математических определений можно подразделить на три этапа:

1-й этап – введение – создание на уроке ситуации, когда учащиеся либо сами “открывают” новое, самостоятельно формируют для них определения, либо просто подготавливаются к их пониманию.

2-й этап – обеспечение усвоения – сводится к тому, чтобы школьники:

а) научились применять определение;

б) быстро и безошибочно запоминать их;

в) понимали каждое слово в их формулировках.

3-й этап – закрепление – осуществляется на последующих уроках и сводится к повторению их формулировок и обработке навыков применения к решению задач.

Ознакомление с новыми понятиями проводятся:

1 способ: учащиеся подготавливаются к самостоятельному формированию определения.

2 способ: учащиеся готовятся к сознательному восприятию, пониманию нового математического предложения, формулировка которого им сообщается затем в готовом виде.

3 способ: учитель сам формулирует новое определение без какой-либо подготовки, а затем сосредотачивает усилия учащихся на их усвоении и закреплении.

1 и 2 способ представляют эвристический метод, 3 способ – догматический. Использование любого из способов должно соответствовать уровню подготовленности класса и опыта учителя.


5. Характеристика приемов введения понятий

Возможны следующие приёмы при введении понятий:

1) можно составить такие упражнения, которые позволяют учащимся быстро сформулировать определение нового понятия.

Например: а) Выписать несколько первых членов последовательности (

), у которой
=2,
. Такая последовательность называется геометрической прогрессией. Попытайтесь сформулировать её определение. Можно ограничиться подготовкой к восприятию нового понятия.

б) Выписать несколько первых членов последовательности (

), у которой
=4,
Далее учитель сообщает, что такая последовательность называется арифметической прогрессией и сам сообщает её определение.

2) при изучении геометрических понятий упражнения формулируются таким образом, чтобы учащиеся построили сами необходимую фигуру и смогли выделить признаки нового понятия, необходимые для формулировки определения.

Например: постройте произвольный треугольник, соедините отрезком его вершину с серединой противоположной стороны. Такой отрезок называется медианой. Сформулируйте определение медианы.

Иногда предлагается составить модель либо, рассматривая готовые модели и чертежи, выделить признаки нового понятия и сформулировать его определение.

Например: введено в 10 классе определение параллелепипеда. По предложенным моделям наклонного, прямого и прямоугольного параллелепипедов выделить признаки, по которым эти понятия различаются. Сформулировать соответствующие определения прямого и прямоугольного параллелепипедов.

3) Многие алгебраические понятия вводятся на основании рассмотрения частных примеров.

Например: графиком линейной функции является прямая.

4) Метод целесообразных задач, (разработан С.И. Шохором-Троцким) С помощью специально подобранной задачи учащиеся приходят к выводу о необходимости введения нового понятия и целесообразности придания ему именно такого смысла, который оно уже имеет в математике.

В 5-6 классах таким методом вводятся понятия: уравнение, корень уравнения, решение неравенств, понятие действий сложения, вычитания, умножения, деления над натуральными числами, десятичными и обыкновенными дробями и т.д.

Конкретно-индуктивный метод

Сущность: