Замечание: Для определения необходимо условие следует подобрать контр пример, опровержение данного утверждения.
Условие р называется необходимым и достаточным для q, если истины одновременно обе импликации: (pÞq) и (qÞp), т.е. имеет место эквивалентность.
Характеристическое свойство наиболее полно определяет объект, выделяя его из некоторого множества сходных объектов, позволяет его сконструировать.
Например, характеристическое свойство арифметической прогрессии:
начиная со второго члена, все члены прогрессии удовлетворяют свойству:
- быть средним арифметическим двух соседних с ним членов (или отстоять от него на равных расстояниях)Пример необходимого и достаточного условия:
Процесс доказательства теорем и геометрии выражает связь единичных суждений (чертеж) и общих (использование общих свойств фигур) поэтому при обучении доказательствам для формирования правильного представления о проблематичном характере того или иного суждения следует применять на каждом шаге вопросы “Почему?”, “На каком основании?”
В курсе планиметрии обучение доказательствам проводится конкретно-индуктивным методом. Так как ученики в курсе геометрии, по мнению Шохор-Троцкого, занимаются преимущественно решением задач. Теоремы они доказывают только такие, которые не принадлежат к числу очевидных для них и которые не требуют слишком тонких рассуждений. Поэтому целесообразно в некоторых случаях предлагать учащимся для решения задачи абстрактного характера, подготавливающие самостоятельное формирование или доказательство теорем.
Например: установить зависимость между сторонами в треугольнике; или свойства биссектрисы угла при вершине равнобедренного треугольника эмпирически.
В процессе обучения у школьников должно быть сформировано следующее понимание термина “доказательство”:
1)допускаются истинными некоторые отношения и факты (которые составляют условие теорем);
2)от условия к заключению строится логическая последовательная цепочка предложений, каждое из них должно быть обосновано с помощью суждений, выраженных в условии, определений известных понятий, аксиом или ранее доказанных утверждений;
3)заключение является последним звеном в цепочке этих логически расположенных предложений.
Например: в курсе математики 5-6 классов этому способствуют задачи с таким содержанием: “Дополнить приведённое доказательство математических утверждений, выполняя указанные выше требования, предъявляемые к математическим доказательствам”.
“Если a:b=c, то a=bc. Доказать”
Условие: a:b=c. Заключение: a=bc.
Предложение | обоснование |
1)a:b=c2)a=bc | 1) условие2) почему? |
В школьном обучении некоторые фрагменты математической теории излагаются содержательно (неформально), поэтому доказательство также содержательны, т.е. в них используются обычные рассуждения, а правила логического вывода не фиксируются. Среди таких правил можно выделить:
1)правило заключения: P; “если P, то Q” - вывод: “Q”.
2)правило введения конъюнкции: P; Q – вывод “P и Q”.
3)правило силлогизма: “если P, то Q”; “если Q, то R” - вывод “если P, то R”.
4)правило отрицания: “если A, то B”, “не B” - вывод “не А”.
5)правило контрапозиции: “если A, то B” - вывод “если не B, то не A”.
6)правило расширенной контрапозиции: “если A и B, то C” - вывод “если A и не С, то не B”.
7)Сведение к абсурду – “если Г, А=>B”, “Г, А=>не B” - вывод “Г=> не А”, где Г – список посылок.
Правило контрапозиции и сведение к абсурду широко применяется в косвенных доказательствах, примером которого может служить доказательство от противного.
Косвенное доказательство некоторой теоремы Т состоит в том, что исходит из отрицания Т, называемого допущением косвенного доказательства и выводят из него ложное заключение применением правила сведения к абсурду.
Например: если а||с, и b||с, то a||b. Допущение: a||c и b||c, но a не|| b. Согласно определению параллельных прямых получаем: если a не|| b => $с (сÎа Ù сÎb), поэтому по правилу введения конъюнкции: из а||c и b||c. $с (сÎа Ù сÎb) имеем: a||c и b||c и $с (сÎа Ù сÎb). Но по аксиоме параллельных прямых (из Т) неверно, что: a||c и b||c и $ с (сÎа Ù сÎb), т.е. из наших допущений вывели противоречие, которое и доказывает теорему.
Специальные формы косвенного доказательства:
1)доказательство методом исключения: надо доказать предложение: “если B, то Q1”, иначе: Г, Р=>Q1: наряду с Q1 рассматриваются все остальные возможности, которые являются: аксиомой, определением, ранее доказанной теоремой или следствием из них. Затем доказывается, что каждая из остальных возможностей, кроме Q1, ведёт к противоречию.
Например: если каждая плоскость, пересекающая прямую а, пересекает и прямую b, то эти прямые параллельны.
Требуется установить следование: “Г,Р” ®Q не ||; “Г” и "a (если a´a, a´b) Þa||b.
Исходим из предложений: Q1:a||b; Q2:a´b; Q3: a-b – скрещиваются.
Допущение Q2:a´b даёт $a (a´a и
) (достаточно провести произвольную плоскость α через b, отличную от плоскости определяемой пересекающимися прямыми a и b) или: так как $a (a´a и ) <=> не для всякой плоскости a (если a´a, то a´b), получаем “если Q2, то ”: если a´b, то не для всякой a если a´a, то a´b).Из “если Q2, то
” и “Р” по правилу отрицания имеем: : .Аналогично допущение Q3: “a-b скрещиваются” приводит к не любой плоскости a (если a´a, то a´b) (достаточно через b и какую-нибудь точку прямой a провести плоскость). Получаем из: “если Q3, то
” и “Р” по правилу отрицания : .Итак, получаем
и, т. е. Q2 и Q3 – неверно, поэтому верно Q1: a||b.2)Метод математической индукции – специальный метод доказательства, применяемый к предложениям типа: “"xÎNP(x)”, т.е. к предложениям, выражающим некоторое свойство, присущее любому натуральному числу.
Схематически полная логическое доказательство теоремы можно составить так: 1) точное понятие; 2) включаем все посылки; 3) не опускают никаких промежуточных рассуждений; 4) явно указывающее правила вывода.
В практике школьного обучения математики наиболее часто используется прямое доказательство, основанное на содержательном доказательстве в свернутом виде: 1) интуитивное понятие; 2) опускают некоторые в частности, общие посылки; 3) опускают отдельные шаги; 4) не фиксируют использование логики.
Например: Диагонали прямоугольника равны.
Теорему можно доказать: а) с помощью осевой симметрии; б) с помощью равенства прямоугольников. Отметим, что различные доказательства теоремы отличаются как математическими посылками, (используемыми в них истинными предложениями данной теории), так и логикой (используемыми правилами).
Доказательство 1.
“Если четырёхугольник – прямоугольник, то его диагонали равны” или “Если ABCD – прямоугольник, то AC=BD”.
Точка D симметрична A; B – симметрична C относительно MN (это непосредственно следует из ранее доказанной теоремы: “Серединный перпендикуляр и сторона прямоугольника являются осью симметрии). Значит, отрезок AC и DB симметричны относительно оси MN. Поэтому AC=BD.
Доказательство 2.
, т.к. они прямоугольные ( ), AB=CD как противоположные стороны прямоугольника; AD – общая сторона. Следовательно, AB=CD.Методика введения теорем предполагает подготовку учащихся к восприятию ее доказательства.
1) Для того, чтобы учащиеся поняли логические части доказательства, применяют метод целесообразных задач.
Например: При доказательстве того факта, что угол между боковым ребром призмы и ее высотой равен углу между плоскостями основания и перпендикулярного сечения, необходимого предварительно решить по готовым чертежам следующие задачи:
1. По данным на рисунке найти
и угол между прямыми BO и OC.Замечание: угол между двумя прямыми (двумя плоскостями) острый.
2. Угол между плоскостями
и равен , прямая OA перпендикулярна плоскости , ; прямая OB перпендикулярна плоскости , . Найти угол между прямыми OA и OB.