Смекни!
smekni.com

Методика изучения законов Ньютона в средней школе (стр. 5 из 6)

4. Ускорение избранного тела, возникающее при его взаимодействии с другим телом, может быть найдено по формуле

Таким образом, существенно новым при формировании понятия о силе является то, что силу неразрывно связывают с ускорением. В том числе поясняют, что сила упругости — это в конечном итоге взаимодействие частей тела, которое приводит их в ускоренное движение.

На примере растянутой пружины выясняют, что при ее сокращении витки движутся с ускорением. «Значит, на все части растянутой пружины... действует сила ...».

Используют также полученные ранее представления о зависимости упругой силы пружины только от деформации или «взаимного расположения ее частей».

С помощью растянутой пружины может быть создана некоторая определенная сила. Вопроса об измерении этой силы или градуировке пружины пока не решают.

По существу в неявном виде растянутая пружина выступает

как некий эталон силы.

Таким образом, взаимосвязанные величины: ускорение

, масса m

и сила

— могут в известной мере рассматриваться как определенные независимо одна от другой.

Зависимость между силой, массой и ускорением. Второй закон Ньютона

Данную зависимость с точностью, которая возможна в демонстрационном эксперименте, устанавливают на опыте,

Поскольку согласно принятой в стабильном учебнике методике сначала устанавливается только способ задания некоторой силы «безразлично какой именно!», в опытах можно варьировать только значение массы и ускорения и, следовательно, устанавливать зависимость

=const.

Установить такую зависимость для прямолинейного движения сложнее, чем для вращательного, поэтому целесообразно для опыта использовать установку (рис.12), основу которой составляет уже знакомый учащимся прибор (см. рис. 9). В установке посредине стержня 1 с помощью винта 2 закрепляют хомутик 3, имеющий вверху петельку для нити 4, которую одним концом привязывают к телу 5 массой т, а другим — к крючку трубчатого динамометра 6.

Рис. 12

Приведя прибор во вращение, показывают, что при одном и том же растяжении пружины произведение массы на ускорение для различных тел остается неизменным.

Опыты позволяют заключить, что о значении силы упругости всегда можно судить по значению произведения

, т.е.
или в векторной форме
.

Далее на примере силы тяжести следует показать, что произведение

является также мерой и других сил. Для этого можно рассмотреть пример с подвешенной на пружине гирей.

Желательно показать, что и для силы трения

. Для опыта можно использовать прибор (см. рис. 12), в котором на среднюю часть стержня 1 надевают резиновую пробку. В пробку на определенную глубину втыкают иголку с ниткой, второй конец которой привязывают к телу 5 массой т. Приводят прибор во вращение и добиваются того,чтобыиголка, удерживаемаянекоторойсилой трения
, была выдернута из пробки. Расчетами находят произведение
.Повторяют опыт с другим телом массой
при той же силе трения и убеждаются,что
Следовательно,
.

Делают вывод: для любых сил в механике

.

Учащимся говорят, что это и есть важнейший закон динамики — второй закон Ньютона. (Авторы многих руководств по физике дают ему поэтому дополнительно «специальное» название — «основной закон динамики».)

Формула

позволяет установить единицу силы. В СИ это известная учащимся единица силы — ньютон, которая теперь может быть строго определена как сила, сообщающая телу массой 1 кг ускорение 1 м/с2,

Используя второй закон Ньютона, с помощью опыта, подобного показанному на рисунке 12, можно проградуировать пружину в ньютонах. Практически тех же целей проще достичь, подвешивая к пружине гири и используя то обстоятельство, что при их равновесии

Это известный учащимся статический метод измерения сил.

Измерение сил. Динамометр. Сложение сил

По данному вопросу следует, прежде всего, восстановить в памяти учащихся сведения об измерении сил динамометрами, которые им известны из курса физики пройденного ранее. В политехнических целях крайне желательно также продемонстрировать технические или медицинские динамометры, к которым школьники всегда проявляют большой интерес.

Принцип действия таких динамометров и их конструктивные особенности желательно пояснить с помощью модели, показанной на рисунке 13. На модели отчетливо видна важнейшая часть динамометра — пластинчатые пружины 1, шкала 2 и передающий механизм, состоящий из зубчатых колес 3 и рейки 4.

Рис. 13

Используя демонстрационный эксперимент, повторяют сведения о сложении сил, направленных по одной прямой, и переходят к изучению главного и нового для учащихся вопроса о сложении сил, действующих на тело под углом друг к другу.

Соответствующие правила сложения сил могут быть установлены на основе уже имеющихся у учащихся общих сведений о сложении векторов. Однако и в этом случае должен быть использован демонстрационный эксперимент. Наопытах следует также показать, как изменяется значение равнодействующей в зависимости от угла между составляющими. Введенные таким образом понятия закрепляют, решая, например, такие задачи:

1.Могут ли силы 10 и 14 Н, приложенные к одной точке, дать равнодействующую3 Н; 4 Н; 24 Н; 30 Н?

2.Найти геометрически равнодействующую двух сил по 100 Н каждая, приложенных в одной точке под углом 30; 45; 90 и 120°,

Закрепление и углубление материала на второй закон Ньютона

Для закрепления и углубления материала на второй закон Ньютона рассматривают главным образом тренировочные задачи, позволяющие усвоить формулу

и единицы измерения входящих в нее величин. При решении задач нужно научить учащихся определять направление векторных величин, особенно ускорения. В соответствии с уравнением
, ускорение имеет то же направление, что и сила. Следует также повторить, как определяется направление ускорения по формуле
, что необходимо в том случае, когда неизвестно направление сил, действующих на тело. Можно начать с такой задачи:

С каким ускорением придет в движение вагонетка массой 400 кг, если на нее начнет действовать сила тяги 100 Н? Указать на чертеже направления скорости, силы и ускорения. Трение не учитывать.

Решение. Выполнив схематический чертеж (рис. 14), изображают действующую силу тяги

.

Рис. 14

Направление ускорения

совпадает с направлением
. Так как в начальный момент вагонетка находилась в состоянии покоя, то направление скорости совпадает с направлением
и
.

Это видно также из формулы


Так как

=0, то

Следует также решить задачи, по условию которых требуется учитывать действие на тело нескольких сил, направленных как по одной прямой, так и под углом друг к другу. Решение таких задач следует свести к рассмотренному выше типу, когда на тело действует только одна сила

. Для этого предварительно, как правило, геометрически находят равнодействующую сил. В данной теме будет достаточно, если равнодействующая
будет суммой всего двух, максимум трех сил, притом расположенных друг к другу под такими углами, которые легко изобразить на чертеже (0, 30, 45, 60, 90, 120, 135, 180°).