Остановимся подробнее на втором определении. Чаще всего в геометрии рассматривают связные фигуры, т. е. такие, в которых любые две точки можно соединить линией, целиком принадлежащей этой фигуре. При этом соединяющая линия может оказаться довольно сложной (рис 1.5). Естественно выделить класс фигур, для которых в качестве линии, соединяющей две ее точки А, В, всегда можно выбрать самую простую линию - прямолинейный отрезок АВ. Такие фигуры называются выпуклыми.
Фигура F называется выпуклой, если вместе с каждыми двумя точками А, В она целиком содержит и весь отрезок АВ. Примеры выпуклых фигур показаны на рис.1.6; на рис. 1.7 изображены некоторые невыпуклые фигуры.
Кроме плоских, можно рассматривать пространственные выпуклые фигуры (их обычно называют выпуклыми телами). Примерами могут служить тетраэдр, параллелепипед, шар, шаровой слой и другие.
Выпуклые тела в пространстве можно определить как пересечение некоторого множества полупространств. Простейшими выпуклыми телами являются те, которые можно представить в виде пересечения конечного числа полупространств. Такие выпуклые тела называются выпуклыми многогранниками. Свойство, положенное в основу определения выпуклых фигур (существование в фигуре прямолинейного отрезка, соединяющего любые две ее точки), с первого взгляда может показаться несущественными, даже надуманным. В действительности же выделяемый этим определением класс выпуклых фигур является весьма интересным и важным для геометрии. Дело в том, что «произвольные» геометрические фигуры могут быть устроены необычайно сложно. Например, определить, находится ли точка А «внутри» или «вне» замкнутого многоугольника, изображенного на рис1.8, совсем не просто. Если же рассматривать фигуры, не являющиеся многоугольниками, то можно столкнуться и с гораздо большими сложностями. Существует, например, плоская фигура, ограниченная не пересекающей себя замкнутой линией и в то же время не имеющая ни площади, ни периметра . Для выпуклых фигур такие чудовищные явления не могут иметь места: внутренняя область выпуклой фигуры сравнительно просто устроена, любая ограниченная плоская выпуклая фигура обладает определенными площадью и периметром, а пространственное выпуклое тело - объемом и площадью поверхности и т. д. Таким образом, выпуклые фигуры составляют класс сравнительно просто устроенных фигур, допускающих изучение геометрическими методами.С другой стороны, класс выпуклых фигур является достаточно обширным. Так, все фигуры и тела, рассматриваемые в элементарной геометрии, либо являются выпуклыми, либо представляют собой несложные комбинации выпуклых фигур и тел. [6]
1.3 Подходы к определению правильного многогранника.
После введения выпуклых многогранников изучаются их виды: призмы, пирамиды и их разновидности. Практически во всех учебниках они определяются одинаково. А при введении определения правильного многогранника авторы учебников расходятся во взглядах. Поэтому интересно рассмотреть различные подходы к определению понятия правильного многогранника и их методические особенности.
В различных учебниках по стереометрии используются разные определения этого понятия. Так, в учебнике [4] и других выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и, кроме того, в каждой вершине сходится одно и то же число ребер. В учебнике [22] вместо условия равенства правильных многоугольников требуется, чтобы правильные многоугольники были с одним и тем же числом сторон. Пособие А.Д. Александрова и других [3] по сравнению с учебником [4] накладывает дополнительное требование равенства всех двугранных углов правильного многогранника. При этом многогранник называется выпуклым, если любыедве его точки соединимы в нем отрезком. [3]
Учебное пособие [16] дает такое определение: выпуклый многогранник называется правильным, если все его грани - конгруэнтные правильные многоугольники, и все его многогранные углы имеют одинаковое число граней.
В [15] многогранник называется правильным, если все его грани - равные правильные многоугольники и все многогранные углы равны. И, наконец, в книге [9] сказано: многогранник называется правильным, если все его грани равные правильные многоугольники, и все его двугранные углы равны.
Как видим, во всех перечисленных учебниках даются различные определения понятия правильного многогранника, использующие разные свойства правильных многогранников.
Перечислим их:
1°. Выпуклость многогранника.
2°. Все грани - равные правильные многоугольники.
3°. Все грани - правильные многоугольники с одним и
тем же числом сторон.
4°. В каждой вершине сходится одинаковое число ребер.
5°. Все многогранные углы имеют одинаковое число граней.
6°. Равны все многогранные углы.
7°. Равны все двугранные углы.
Возможны и другие свойства правильных многогранников,
например:
8°. Равны все ребра многогранника.
9°. Равны все плоские углы многогранника.
Какие же свойства следует взять для определения правильного многогранника? Каким методическим требованиям оно должно удовлетворять?
Нам представляется, что для отбора свойств в определении правильного многогранника нужно руководствоваться следующими требованиями:
- Всякое определение должно быть полным, т. е. включать те свойства, которые полностью определяют данное понятие. Иными словами, любое свойство данного понятия должно быть выводимо из свойств, перечисленных в определении.
- Всякое определение должно быть по возможности экономным, т. е. не содержать лишних свойств, которые выводятся из остальных свойств правильного многогранника.
- Определение понятия правильного многогранника должно отражать уже имеющиеся представления учащихся о слове "правильный" (правильный многоугольник, правильная пирамида и т. д.).
- Определение понятия правильного многогранника должно быть пространственным аналогом определения понятия правильного многоугольника на плоскости.
- Определение правильного многогранника должно допускать возможные обобщения, например, на случай полуправильных и топологически правильных многогранников.
- Определение должно быть педагогически целесообразным, т. е. свойства, включенные в него, должны в той или иной степени использоваться при изучении правильных многогранников, нести определенные педагогические функции.
Пространственными аналогами определения правильного многоугольника являются определения, данные в пособиях [15]и [9]. К числу достоинств этих определений мы относим и то, что в них отсутствует требование выпуклости, которое, с одной стороны, является довольно сложным для учащихся, а с другой - фактически не используется при доказательстве теорем и решении задач. К недостаткам этих определений следует отнести то, что они не обобщаются на случаи полуправильных и топологически правильных многогранников. Например, равенство двугранных углов не переносится на случай полуправильных многогранников.
Для определения топологически правильных многогранников следует использовать свойства, носящие топологический характер. Такими свойствами из перечисленных выше являются 3°, 4° и 5°. Поэтому лучше всего для этих целей подходит определение правильных многогранников, данное в учебнике [22].
Таким образом, мы видим, что ни одно из рассмотренных выше определений правильного многогранника не является универсальным, т. е. удовлетворяющим всем требованиям. В зависимости от целей обучения следует выбирать и соответствующее им определение. Так, если надо только ознакомить учащихся с определением правильного многогранника, установив аналогию с определением правильного многоугольника, не исследуя при этом подробно свойства правильных многогранников, то целесообразно использовать определения, данные в пособиях [15] и [9]. Если же мы хотим рассмотреть свойства правильных многогранников более подробно, в частности перейти к полуправильным и топологически правильным многогранникам, то лучше всего обратиться к определениям из учебников [4] и [22]. [29], [27]