2.Изучение многогранников в школьном курсе математики.
В школьных учебниках после изучения «бесконечно-протяженных» и в силу этого весьма абстрактных геометрических фигур: прямых и плоскостей (вернее сказать, их взаимного расположения в пространстве) изучаются зримые, «конечные», даже, можно сказать, осязаемые пространственные фигуры, и в первую очередь многогранники. Многогранник {точнее, модель многогранника) можно изготовить, повертеть в руках, «развернуть» его поверхность или даже «разрезать» - посмотреть на сечение. В данной теме это весьма существенно, и учителю необходимо использовать значительно расширившиеся возможности привлечения наглядности, наглядных средств (не забывая уделять достаточное внимание и построению проекционных чертежей). О наглядных средствах поговорим немного позднее.
Можно указать на такие две проводимые методологические линии в изучении геометрии многогранников: это их классификация и изучение различного рода количественных характеристик. Конечно, эти линии переплетаются между собой. В данной теме рассматриваются простые характеристики - численные: длины ребер, высоты, величины углов, площади поверхностей, - и качественные, типа «правильности». Собственно говоря, качественные характеристики - это одна из основ классификации многогранников. Если исключить стоящие чуть в стороне от ведущей линии курса правильные многогранники (пять «платоновых тел»), то логическую схему классификации «школьных» многогранников можно описать примерно следующим образом. Рассматриваются (и строго определяются) только два вида многогранников: призмы и пирамиды. Конечно, внутри этих видов проводится грубая классификация по числу углов - призмы и пирамиды бывают n-угольными, где n= 3, 4, 5,… . Более детальная классификация - по взаимному расположению ребер и граней, по виду граней. Для призм она относительно «разветвленная»:
И далее:
Школьная классификация пирамид менее разветвленная:
Первая задача учителя - добиться от всех учащихся знания этой классификации в том виде, в каком она подается в учебном пособии, т. е. в виде соответствующих определений. И у ученика, и у учителя при изучении данной темы может возникнуть вполне естественный вопрос: почему столько внимания (и столько задач) посвящается всего лишь трем частным типам многогранников - параллелепипедам, правильным призмам и правильным пирамидам?Причин по крайней мере три: 1) эти многогранники нужны для дальнейшего построения теории (главным образом теории объемов); 2) они обладают симметрией, как многие формы природы и творения рук человеческих (скажем, архитектурные формы); 3) они обладают «хорошими свойствами», т. е. для них можно сформулировать и доказать достаточно простые теоремы.
Последнее преимущество обусловлено свойствами симметричности; с другой стороны, как раз «хорошие свойства» и используются в теоретических целях. Все теоремы этой темы относятся к «избранным» многогранникам, причем совсем просто доказываются и наполовину имеют вычислительный характер (т. е. вид формул). Поэтому вторая задача учителя - добиться знания учащимися всехтеорем (с доказательствами).
Третья по счету, но первоочередная для учителя задача - научить школьников решать задачи. Практически все задачи (упражнения) темы вычислительные, большую часть из них составляют простые или совсем простые задачи, и здесь перед учителем раскрываются большие возможности в продолжение линии обучения школьников эвристическим приемам решения задач. В задачах находят отражение и главные методологические идеи решения задач - аналогия стереометрии с планиметрией, сведение стереометрических задач к планиметрическим.
Рассмотрим изучение темы «Многогранники» в школьных учебниках. Для примера возьмем учебники разного уровня изложения материала: предназначенные для общеобразовательной школы, для гуманитарных классов, для классов с математическим уклоном.
2.1 Учебник Атанасяна Л.С.
Рассмотрим изучение темы «Многогранники» по учебнику Атанасяна. Этот учебник предназначен для общеобразовательной школы. Остановимся на нем подробнее.
Данная тема изучается в главе 3. На изучение ее отводится 12 уроков. Ниже приведено поурочное планирование в таблице.
Номер урока | Содержание учебного материала |
1-4 | §1. Понятие многогранника. Призма.Понятие многогранника. Призма. Площадь поверхности призмы. ( п.25-27) |
5-9 | §2. Пирамида.Пирамида. Правильная пирамида. Усеченная пирамида. Площадь поверхности пирамиды. (п.28-30) |
10 | §3. Правильные многогранники.Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильных многогранников. (п. 31-33) |
11 | Контрольная работа. |
12 | Зачет по теме. |
Еще до изучения темы «Многогранники» учащиеся знакомятся с их простейшими видами в главе 1 §4 «Тетраэдр и параллелепипед». На их изучение отводится 5 часов. Понятия тетраэдра и параллелепипеда вводятся в данной главе для того, чтобы рассмотрение их свойств, построение сечений способствовали углублению понимания вопросов взаимного расположения прямых и плоскостей, поэтому необходимо, чтобы решение задач сопровождалось ссылками на аксиомы, определения и теоремы.
При объяснении понятий тетраэдра и параллелепипеда необходимо подчеркнуть, что многоугольник в пространстве представляет собой плоскую поверхность, а тетраэдр и параллелепипед – поверхности, составленные из плоских поверхностей (многоугольников).
Для формирования у учащихся представления о способах изображения на чертеже тетраэдра и параллелепипеда полезно с помощью диапроектора показать на экране различные проекции их каркасных моделей. Полезно также обсудить простейшие свойства параллельной проекции.
В результате изучения параграфа учащиеся должны уметь объяснить, что называется тетраэдром, параллелепипедом, указывать и называть на моделях и чертежах элементы этих многогранников; знать свойства граней и диагоналей параллелепипеда; уметь изображать тетраэдр и параллелепипед, строить их сечения.
Основная цель темы «Многогранники» - дать учащимся систематические сведения об основных видах многогранников.
Учащиеся уже знакомы с такими понятиями, как тетраэдр и параллелепипед, и теперь им предстоит расширить представления о многогранниках и их свойствах. В учебнике нет строгого математического определения многогранника, а приводится лишь некоторое описание, так как строгое определение громоздко и трудно не только для понимания учащимися, но и для его применения. Такое наглядное представление о геометрических телах вполне достаточно для ученика на первичном уровне рассмотрения понятия. Ниже, в п. 26, рассматривается определение геометрического тела, в связи с чем вводится ряд новых понятий. Этот материал могут прочитать самостоятельно наиболее подготовленные учащиеся, проявляющие повышенный интерес к математике.
На уроке, используя модели многогранников (куб, параллелепипед, тетраэдр, призма), необходимо назвать учащимся их элементы: вершины, грани, ребра, диагонали граней и диагонали рассматриваемых тел. Важно, чтобы школьники усвоили эти понятия, что позволит правильно понимать формулировки задач, не смешивая названия различных элементов в процессе их решения. После этого вводится понятие выпуклого и не выпуклого многогранников; обязательно учащимся показать примеры невыпуклых многогранников.
Призма А1 А2… Аn В1 В2 …Вnопределяется как многогранник, составленный из двух равных многоугольников А1 А2… Аn и В1 В2 …Вn , расположенных в параллельных плоскостях, и n-параллелограммов А1 А2 В2 В1, …, Аn А1 В1 Вn. Далее вводятся определения элементов призмы, с помощью моделей разъясняются понятия прямой призмы, наклонной призмы, правильной призмы. Необходимо обратить внимание учащихся на то, что четырехугольная призма – это знакомый им параллелепипед. У произвольного параллелепипеда все шесть граней – параллелограммы, а боковые грани – прямоугольники, у прямоугольного параллелепипеда все шесть граней – прямоугольники. При изучении площади поверхности призмы доказывается теорема о площади боковой поверхности прямой призмы.
Пирамида определяется как многогранник, составленный из n-угольника А1 А2 … Аnи n-треугольников. При введении понятия правильной пирамиды следует акцентировать внимание учащихся на двух моментах: основание пирамиды – правильный многоугольник, и отрезок, соединяющий вершину пирамиды с центром ее основания, является высотой пирамиды. Можно устно доказать, что боковые грани правильной пирамиды – равные равнобедренные треугольники. После этого вводится понятие апофемы правильной пирамиды (высота боковой грани правильной пирамиды, проведенной из ее вершины), при этом нужно подчеркнуть, что этот термин употребляется только для правильной пирамиды, хотя у неправильной пирамиды также могут быть равны высоты боковых граней.
При изучении теоремы о площади боковой поверхности правильной пирамиды полезна символическая запись доказательства. Пусть сторона основания n-угольной пирамиды равна а, апофема равна d, S∆ - площадь боковой грани. Тогда