Урок 3
Тема урока: интегральная формула для вычисления объема фигуры.
Цель урока: показать построение подынтегральной функции и способ вычисления объемов фигур с помощью интеграла.
В начале урока в ходе решения ряда упражнений следует напомнить учащимся способ вычисления площадей плоских фигур с помощью интеграла:
, где f(x) – функция, задающая криволинейную трапецию.После этого следует сообщить учащимся, что для вычисления объемов пространственных фигур существует аналогичный способ, к изучению которого мы и переходим.
Пусть дана пространственная фигура Ф. Выберем плоскость
таким образом, чтобы она не пересекала Ф (рис. 17).Выберем прямую Ох, перпендикулярную плоскости
. Зададим на этой прямой координаты: за начало координат возьмем О – точку пересечения прямой Ох с плоскостью . Положительное направление выбрано в том полупространстве, в котором расположена фигура Ф. Через точку с координатой х на этой прямой проведем плоскость (х), параллельную плоскости . Таким образом можно установить соответствие между плоскостями, параллельными плоскости , и множеством действительных чисел.Среди плоскостей данного множества есть такие, которые пересекают фигуру Ф. Первая из этих плоскостей имеет координату а, а последняя – b. Таким образом, фигура Ф заключена между плоскостями
(a) и (b), другими словами, задана на отрезке [a,b]. Конечно, далеко не всегда фигура задана на отрезке. Она может быть задана на интервале, на дискретном множестве и т. п. Но в курсе геометрии средней школы можно ограничиться рассмотрением фигур, заданных на отрезке.Упражнения:
1. Дан куб ABCDA1B1C1D1, длина ребра которого равна 3. В качестве плоскости
выбрана плоскость ABCD, а в качестве Ох – прямая АА1. Найдите значения a и b и укажите плоскости (a) и (b).2. Дана пирамида ABCD. В качестве плоскости
выбрана плоскость BCD, а в качестве оси Ох – высота АМ пирамиды. Найдите значения a и b и укажите плоскости (a) и (b), если АМ=6.3. Дан шар радиуса 8 см с центром в точке К. В качестве плоскости
выбрана плоскость на расстоянии 10 см от центра шара. Задайте ось Ох, найдите значения a и b и укажите плоскости (a) и (b).4. Постройте функцию S(x) для шара радиуса 8 см, если плоскость
(х) проходит через центр шара.5. Постройте функцию S(x) для конуса с высотой Н и радиусом основания R, если в качестве плоскости
выбрана плоскость, параллельная основанию и проходящая через вершину конуса.После решения этих упражнений формулируется следующее определение: объемом фигуры Ф называется интеграл от a до b функции S(x):
. Упражнения:
6. Запишите интегральную формулу для вычисления объемов фигур, заданных в упр. 4, 5.
7. Запишите формулу для вычисления объема цилиндра высоты Н и радиуса R, если в качестве плоскости
выбрана плоскость основания цилиндра.8. Запишите формулу для вычисления объема прямоугольного параллелепипеда с измерениями m, p, n (плоскость
задайте сами).Урок 4
Тема урока: интегральная формула для вычисления объема фигуры.
Цель урока: закрепить изученное на предыдущем уроке и провести доказательство обоснованности данного определения объема.
Упражнения:
1. Выведите формулу для вычисления объема призмы с высотой Н и площадью основания S.
Решение. Здесь a=0, b=H, S(x)=0. Следовательно,
.2. Выведите формулу для вычисления объема пирамиды с высотой Н и площадью основания Q (аналогично тому, как это делалось для конуса).
Решение. Выберем в качестве плоскости
плоскость, параллельную основанию и проходящую через вершину. Тогда а=0, b=H, . Поэтому S(x)= . Следовательно, .Так как объемы фигур должны удовлетворять ранее перечисленным свойствам объемов, то надо показать, что при таком определении объема эти свойства выполнены.
Упражнения:
Выпишите интегральные формулы и выведите формулы для вычисления объема:
1. Призмы с высотой Н и площадью основания S.
2. Пирамиды с высотой Н и площадью основания Q.
3. Цилиндра с высотой Н и радиусом основания R.
4. Конуса с высотой Н и радиусом основания R.
5. Шара радиуса R.
После изучения всех формул для нахождения объема тел следует провести проверочную работу в виде теста.
Тест (объем прямоугольного параллелепипеда) [34]
1. Выберите неверное утверждение.
а) За единицу измерения объемов принимается куб, ребро которого равно единице измерения отрезков;
б) тела, имеющие равные объемы, равны;
в) объем прямоугольного параллелепипеда равен произведению трех его измерений;
г) объем куба равен кубу его ребра;
д) объем прямоугольного параллелепипеда равен произведению площади основания на высоту.
2. Найдите объем прямоугольного параллелепипеда, если его длина равна 6 см, ширина – 7 см, а диагональ – 11 см.
а) 252 см3; б) 126 см3; в) 164 см3; г) 462 см3; д) 194 см3.
3. Основанием прямоугольного параллелепипеда служит квадрат, диагональ которого равна 6. Через диагональ основания и противолежащую вершину верхнего основания проведена плоскость под углом 450 к нижнему основанию. Найдите объем параллелепипеда.
а) 108; б) 216; в)27; г)54; д) 81.
4. Стороны основания прямоугольного параллелепипеда равны 5 см и 12 см, диагональ параллелепипеда составляет с плоскостью основания угол 600. найдите объем параллелепипеда.
а) 390
см3; б) 390 см3; в) 780 см3; г) 780 см3; д) 780 см3.Тест (объем призмы)
1. Сторона основания правильной треугольной призмы равна 2
см, а высота – 5 см. найдите объем призмы.а) 15
см3; б) 45 см3; в) 10 см3; г)12 см3; д) 18 см3.2. Выберите неверное утверждение.
а) Объем прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту;
б) объем правильной треугольной призмы вычисляется по формуле
, где а – сторона основания, h – высота призмы;в) объем прямой призмы равен половине произведения площади основания на высоту;
г) объем правильной четырехугольной призмы вычисляется по формуле
, где а – сторона основания, h – высота призмы;