д) объем правильной шестиугольной призмы вычисляется по формуле
, где а – сторона основания, h – высота призмы.3. Основанием прямой призмы является ромб, сторона которого равна 13 см, а одна из диагоналей – 24 см. найдите объем призмы, если диагональ боковой грани равна 14 см.
а) 720
см3; б) 360 см3; в) 180 см3; г) 540 см3; д) 60 см3.4. Основанием прямой призмы служит треугольник со сторонами 10, 10, 12. Диагональ меньшей боковой грани составляет с плоскостью основания угол 600. найдите объем призмы.
а) 480
; б) 960 ; в) 240 ; г) 480; д) 240.Тест (объем пирамиды)
1. Объем правильного тетраэдра равен 9 см3. Найдите его ребро.
а) 4 см; б) 2
см; в) 3 см; г) 6 см; д) 3 см.2. Выберите неверное утверждение.
а) объем пирамиды равен произведению одной третьей площади основания на высоту;
б) объем правильного тетраэдра вычисляется по формуле
, где а – ребро тетраэдра;в) объем усеченной пирамиды, высота которой равна h, а площади основания равны S и M, вычисляется по формуле
г) объем правильной треугольной пирамиды, ребро которой равно а и все боковые ребра наклонены к плоскости основания под углом
, вычисляется по формуле ;д) объем правильной шестиугольной пирамиды, ребро которой равно а и все боковые ребра наклонены к плоскости основания под углом
, вычисляется по формуле .3. Найдите объем усеченной пирамиды, площади оснований которой равны 3 см2 и 12 см2, а высота равна 2 см.
а) определить нельзя; б) 7 см3; в) 42 см3; г) 14 см3; д) 56 см3.
4. Основанием пирамиды МАВС служит треугольник со сторонами АВ = 5 см, ВС = 12 см, АС = 13 см. Найдите объем пирамиды, если МВ
АВС и МВ = 10 см.а) 300 см3; б) 260 см3; в) 780 см3; г) определить нельзя; д) см3.
Углубленное изучение геометрии по учебнику [6]
Рассмотрим методические рекомендации для углубленного изучения темы «Объемы многогранников». В настоящее время для данного обучения в школах используют учебник [6], так как именно он рекомендован (допущен) Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях. Теоретический материал учебника разбит на две части – основную и дополнительную. Основная часть содержит теоретические сведения (аксиомы, определения, теоремы); материал, в котором рассказано о значении наиболее важных геометрических результатов, о различных применениях стереометрии в других науках, технике, искусстве, быту, об истории геометрии.
В дополнительном материале с большей глубиной и подробностью обсуждаются самые трудные вопросы курса. Этот материал рассчитан на учащихся, особенно интересующихся математикой.
Глава V данного учебного пособия посвящена объемам тел многогранников. Эта глава традиционная для школьного курса геометрии. И построение ее как будто бы традиционное: сначала выработка общего понятия, затем вывод конкретных формул. Однако есть и характерные отличия.
1. Четко выясняется множество фигур, которые имеют объем в смысле данного определения.
2. Впервые в школьном курсе (и в такой формулировке) дается теорема о существовании и единственности объема.
3. Теорема о представлении объема интегралом рассмотрена с помощью наглядных соображений, так как полное доказательство «сложно и требует расширения понятия интеграла», однако рассуждение приведено тактично и не нарушает уверенности ученика в возможность доказать это утверждение.
4. В данном учебнике выводится формула для нахождения объема наклонного параллелепипеда.
Объем прямого цилиндра
В пункте 26.1 высказаны наглядные соображения, «доказательство математического утверждения с точки зрения физики». С учетом уровня класса можно предположить несколько вариантов дальнейших событий:
а) этим и ограничиться;
б) предложить желающим разобрать пункт 26.2 самостоятельно и ответить индивидуально на оценку;
в) предложить отдельным учащимся сделать сообщение о теореме на уроке. (Для этого теорему можно разбить на 4-5 частей);
г) предложить учащимся разобраться в теореме самостоятельно, а учитель организует по ней семинар в классе;
д) доказать теорему и попросить повторить «сильных» учеников на следующем уроке. И т. д.
Представление объема интегралом
С точки зрения методической представляется более удобным дать формулировку теоремы после доказательства, а сам вывод разбить на четыре части, примерно соответствующие бытовавшему когда-то алгоритму вывода формул и теорем дифференцирования:
1)
х; 2) V; 3) ; 4) V’(x).Первый способ рассуждения в теореме более аналитичен, а второй наглядный, и здесь можно «задействовать» теорему о сжатой переменной.
Объемы некоторых тел
Содержание параграфа – независимый вывод формул объемов четырех конкретных видов тел. При желании этот набор можно дополнить выводом формул объемов усеченного конуса (пирамиды) и шарового сегмента. Это позволяет провести с учениками групповую работу. Схема проведения таких работ состоит из нескольких этапов.
I этап. Класс разбивается на группы по шесть человек. Каждому участнику группы дается задание изучить вывод одной из формул (естественно, задания всем в группе различные). Четыре ученика учат пункты § 27, а двое получают от учителя тексты, где выводятся формулы объемов усеченного конуса и шарового сегмента. (Учитель может заменить их другими формулами или вообще не давать других формул, но тогда группа уменьшается до четырех человек и меняется время дальнейшей работы.) Изучив соответствующую теорему, ученик записывает ее в конспект и отыскивает ученика из своей группы, также закончившего запись. Они рассказывают друг другу каждый свою теорему, записывая коротко вывод в конспекте. После этого каждый из них задает вопросы другому и отвечает на его вопросы. После этого пара «распадается», и каждый снова ищет свободного участника своей группы и т. д. На все это уходит два часа. На дом ученики получают задание вывести оставшиеся формулы.
II этап. Продолжается работа в тех же группах (это уже следующий урок геометрии). Однако правила меняются. Теперь каждый получает задание спрашивать вывод какой-то одной из шести формул объема и отвечает спрашиваемому соответственно одну из четырех формул (кроме той, что объяснял на том уроке, и той, что сам спрашивает). За ответ он ставит оценку. На это уходит 1 час.
III этап. И наконец, учитель может на следующем (уже четвертом) уроке вызвать по 1-2 представителя от каждой группы, чтобы по жребию ответить у доски одну из теорем (можно добавить и формулы из домашнего задания). Остальные группы при этом слушают, рецензируют, задают вопросы, добавляют. В итоге каждый ученик оценивается по четырем позициям: 1) запись в конспекте, 2) оценка при ответе товарищу, 3) ответ представителя из группы, 4) качество вопросов и рецензий.
Элемент случайности приносит дополнительную ответственность, игровой момент и компенсируется остальными составляющими оценки [22].
Одним из методов научного исследования наиболее подходящим для изучения и анализа интеллектуального развития группы учащихся является педагогический эксперимент. В ходе его проведения предстоит выяснить, каким образом факультативные занятия влияют на изменение умственного, логического, абстрактного мышления.
В период прохождения педагогической практики в МОУ СОШ с. Сырьяны мною были разработаны факультативные занятия для учащихся 11 класса по теме «Объемы многогранников». В дальнейшем данными конспектами воспользовались учителя для преподавания в своих классах. Кроме конспектов уроков была разработана система заданий для контроля знаний учащихся (самостоятельные и контрольные работы, тесты) [15], [20],[26], [35].
Эксперимент проводился в ПТУ № 16 г. Белая Холуница в группах С‑21 и С-22. Эти группы сформированы на базе 9-летнего образования из учащихся города и района. На первом курсе они изучили материал 10-11 классов (по учебнику Л. С. Атанасяна), а на втором предполагалась углубленная работа по некоторым из тем пройденного курса. На момент проведения занятий ученики были знакомы с понятиями многогранника, объема многогранников, телами вращения.