Смекни!
smekni.com

Методика изучения функций в школьном курсе математики (стр. 2 из 3)

3. Методика формирования понятий общих свойств функций

В школьной математике функции образуют классы, обладающие общностью аналитического способа задания, сходными особенностями графиков, областей применения. В курсе алгебры происходит вживление основных понятий функциональной линии. Каждая функция представлена в виде объекта, и её освоение происходит в сопоставлении черт, специфических для неё. Переходя к изучению класса функций (например, линейных) необходимо исследовать данную функцию, как член класса и изучить свойства всего класса на примере типичной функции.

Связи внутри функциональной линии при изучении функций:

1). Индивидуально-заданная функция

Общее понятие функции

данная функция
характерные приёмы изучения и исследования данной функции

2). Функция, входящая в класс

Общее понятии функции

данная функция
общие свойства класса функций
характерные приёмы изучения и исследования функций данного класса
ведущие примеры функций данного класса.

Методика изучения общих функциональных понятий.

Понятие функции вводится в 7 классе, многие общие функциональные понятия вводятся в теме "Числовые функции" в 4 классе. Только понятие периодичности вводится в 10 классе и в 11 – понятие функции, обратной данной.

Методическая схема введения понятия функции:

1. Понятие функции вводится конкретно-индуктивным способом;

2. На основании конкретной формулы устанавливаются характеристические свойства общего понятия функции: области определения, значения, зависимость: каждому

- единственное значение
.

3. Формулируются определения функции, сообщается учителем область определения и область значения.

4. Проиллюстрировать сказанное рисунком.

5. Привести контр пример понятия функции:

; область определения
; область значений
.

6. Рассмотреть упражнения.

7. Закрепить формулировку понятия функции.

По этой же схеме можно изучать и остальные общие функциональные свойства: чётность, монотонность, периодичность и т.д.

4 Методическая схема изучения функций. Изучение функций в классе функций

Методические схема изучения функции.

1.Рассмотреть подводящую задачу, с помощью которой мотивируется изучение новой функции.

2.На основе математизации эмпирического материала сформулировать определение функции (сообщить формулу).

3.Составить таблицу значений функции и построить "по точкам" её график.

4.Провести исследование основных свойств функции (преимущественно по графику)

5.Рассмотреть задачи и упражнения на применение изученных свойств функции.

Особенность схемы-исследования функции имеет наглядно-геометрический подход, аналитическое исследование имеет ограниченный характер. Схема применима в изучении линейной, квадратичной, степенной и других функций, с которыми учащиеся знакомятся в курсе алгебры.

Изучение функций в классе функций. Класс линейных функций.

Типичный для математики класс функций – линейные. Первоначальное представление связывается с равномерным прямолинейным движением или с построением графика некоторой линейной функции. Рассматривая второй источник можно убедиться в том, что график отдельно взятой линейной функции не может привести к формулированию представлений об основных свойствах графиков всех линейных функций.

Первый способ: использование загущения точек на графике. а) нанесение нескольких точек; б) наблюдение – все построенные точки расположены на одной прямой; в) проверка – берём произвольное значение аргумента и вычисляем по нему значения функции; г) наносим точку на координатную плоскость – она принадлежит построенной прямой. Такой приём приведёт к пониманию того, что график любой линейной функции – прямая (выделение одного из свойств линейной функции), на его проведение потребует очень много времени и общие свойства формулируется на изолированных примерах.

Второй способ: по двум точкам. Этот способ предполагает знание соответствующего свойства графиков линейных функций, выявление новых свойств не происходит.

При обучении происходит последовательная схема этих способов.

Для изучения класса линейных функций в совокупности его общих свойств перед учащимися ставится познавательная задача исследовать класс функций

в зависимости от параметров, здесь лучше всего рассмотреть несколько функций с различными параметрами,

Например: Постройте графики функций

у=0.5х; у=0.5х+ 0.5; у=1.5х; у=1.5х+0.5.

Дальше необходимо их сравнить, обращая внимание на особенности, связанные с числовыми значением коэффициентов.

Например, изучая геометрический смысл коэффициентов при переменной, отличаем одинаковость углов наклонов к оси

, чем меньше этот коэффициент, тем меньший угол наклона образует прямая с осью. После этого формулируется вывод о зависимости рассмотренного угла от коэффициента и вводится понятие "угловой коэффициент". Закрепляющие упражнения: на одном и том же чертеже изображены графики функций у=3х+2; у=3\4х+2. Построить на этом чертеже графики функций у=3х-1; у=3\4х -1; объяснить построение.

Класс квадратичных функций.

Изучение класса квадратичных функций основано на преобразовании к виду : a(x-b)

+с, использовании геометрических для построения графика произвольной квадратичной функции из параболы стандартного положения – графика функции
. Квадратичная функция вводится и изучается в тесной связи с квадратичными уравнениями и неравенствами.

Первая функция этого класса –-

. Эта функция не монотонна на области определения. Если учащимся предложить найти область значения функции на
, то в большинстве случаев они записывают
. Устранение ошибки – построение графика.

Характер изменения значений функции неравномерный, что можно показать при построении графиков: а) в крупном масштабе на

; б) в мелком масштабе на
. Важно отметить свойство параболы – симметричность относительно оси ординат. Применение функции
- введение иррационального числа – графическое решение уравнения
.

Класс квадратичных функций начинается с изучения функции

и выяснения смысла коэффициента а (геометрического). Затем вводятся функции вида
и выясняется смысл второго коэффициента (например, как перенос по оси у ).

Например: задан график функции

. Построить на этом чертеже график функции
.

Достаточно сравнить значения этих функций при одних и тех же значениях аргумента. В дальнейшем это свойство можно обобщить: чтобы построить график функции

по известному графику функции
, можно произвести параллельный перенос второго графика на
единиц вдоль оси ординат. Итак, первый коэффициент при
влияет на направление ветвей, свободный член – означает параллельный перенос, выяснение значения коэффициента при х затруднено, поэтому используют обходной маневр: и рассматривают :
.

При изучении функций можно использовать системы заданий, имеющих цель – дать представление о тех или иных чертах данной функции или целого числа без указания точного значения величин, связанных с рассматриваемым вопросом.

Пример. На рисунке изображены графики функций

и
. Как относительно них пройдёт график функции
?