Учебник [15] разбит на две главы: натуральные числа и дробные числа. В первой главе присутствуют задачи на все действия с натуральными числами, во второй главе с пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от учащихся. Также определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные которых выражены десятичными дробями. Во всех задачах используется самый разнообразный сюжет. Все сюжеты встречаются в жизни: сборка урожая, приготовление пищи, географическая тематика, заполнение емкости водой, нахождение массы тела, длины ленты, ткани и т.д.
В задачах на движение представлены реальные ситуации, не которые из которых можно разыграть на уроке: прогулки от дома до школы, от дома до кинотеатра, от кафе до стадиона, от одного населенного пункта до другого; соревнования на лыжах, велосипедах, автомобилях, по плаванию, движение на различном транспорте от одного пункта до другого; движение по течению реки и против течения на теплоходе, катере, корабле. Много встречается задач на определение возраста людей; на деление заработной платы между рабочими; на распределение денежных средств между спортсменами, занявших призовые места. Меньше внимания уделяется решению задач арифметическим способом, а делается упор на отработку умений решать алгебраическим способом. После изучения темы "Решение задач с помощью уравнений" этот способ преобладает в дальнейшем. Имеются задачи на проценты.
Учебник [16] тоже разбит на две главы: обыкновенные дроби и рациональные числа. В теме "Умножение и деление обыкновенных дробей" завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Расширение аппарата с действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби, выполняя соответственно умножение или деление на дробь. Представлены задачи на пропорциональные величины. Сюжеты задач имеют такую же направленность как и в 5 классе.
Задачи в учебниках [15, 16] решаются как алгебраическим способом, так и арифметическим.
В учебнике [11] задачи на движение, части, уравнивание, совместную работу решаются арифметическим способом. Есть отдельный пункт: "Разные арифметические задачи" в котором представлены необычные способы решения задач. Они подробно разобраны. Присутствую также задачи на нахождение дроби от числа и числа по его дроби. В этом пункте предлагается решать задачи любым из двух способов: опираться на смысл понятия дроби или применять одно из двух правил, представленных в учебнике:
1. Чтобы найти число по его дроби, можно разделить на эту дробь число, ей соответствующее.
2. Чтобы найти дробь от числа, можно это число умножить на данную дробь.
В одном из разделов "Для тех, кому интересно" имеются старинные задачи на дроби.
В учебнике [12] большое внимание уделяется задачам на движение: на нахождение собственной скорости катера; пути пройденного катером по течению реки и против; пути вертолета при попутном ветре, при встречном ветре за определенный промежуток времени. Также присутствуют задачи, которые имеют сказочный сюжет. Например: Вини-Пух вышел из дома Пяточка к дому Кристофера Робина. Он проходит за 1 мин 50 м. Через две минуты вслед за ним вышел Пятачок, который за 1 мин проходит 60 м. На каком расстоянии от дома Пяточка находиться дом Кристофера Робина, если они пришли туда одновременно?
В учебнике [13] класса отдельно выделены параграфы для перевода задачи на математический язык и на составление математической модели. Уделяется большое внимание задачам на проценты, которые имеют разный сюжет: сборка урожая; вычисление заработной платы; нахождение площади, отведенной под сельскохозяйственные культуры; определение количества учащихся, посещающих разные кружки, студии и секции; определение количества монет в коллекции нумизмата, марок в коллекции филателиста. Имеются сюжетные задачи на деление фруктов на части.
В учебнике [14] встречаются самые разнообразные сюжеты: масса учебников и их количество (имеется в виду учебник определенного наименования); средняя скорость движения и проделанный за определенное время путь; время движения и путь, проделанный с определенной скоростью; средняя скорость движения и время на преодоление определенного расстояния; рост человека и его масса; высота предмета в данной точке земли и тень, которую он отбрасывает при конкретном времени в ясную погоду.
В учебниках [13, 14] используются алгебраический и арифметический способы решения задач.
Авторы Г.В. Дорофеев, Л.Г. Петерсон в своем учебнике "Математика 5 класс" (в 2 частях) посвятили целый параграф на перевод задачи на математический язык и на составление математической модели. Выделен пункт на решение задач на дроби. Присутствуют задачи на совместную работу. Задачи решаются арифметическим способом.
В учебнике [18] рассматриваются задачи на движение по реке, на нахождение процента от числа, на нахождение числа по его проценту, на простой процентный рост, на сложный процентный рост, на нахождение среднего арифметического, на смеси и сплавы. Сюжеты в учебниках [17, 18] самые разнообразные: определение времени наполнения водоема, бассейна; определение времени пошива одежды; определение времени уборки снега; нахождение массы продуктов; определение процентного содержание ингредиента в продукте; нахождение времени, скорости полета насекомых; нахождение расстояния между пунктами и т.д. Задачи решаются арифметическим и алгебраическим способами.
Таким образом, проанализировав учебники [11, 12, 13, 14, 15, 16, 17, 18] мы можем сказать, что сюжеты задач схожи. Сюжетные задачи - это наиболее традиционный вид математических задач. Они всегда занимали одно из ведущих мест в обучении математике, так как их функции в обучении весьма значительны, и среди них одна из важнейших - методологическая, суть которой заключается в том, что с помощью с сюжетных задач обучаемый может познавать реальную действительность, осознавать те знания и умения, которые необходимы при решении любых задач, а не только сюжетных.
Сюжетной задачей называют такую задачу, в которой данные и связь между ними включены в фабулу. Содержание сюжетной задачи чаще всего представляет некоторую ситуацию, более или менее близкую к жизни. Эти задачи важны главным образом для усвоения учащимися математических отношений, для овладения эффективным методом познания - моделирование, для развития способностей, интереса учащихся к математике.
Большое значение при обучении математике имеет формирование общего приема решения задач. Но анализ практики показывает, что основное внимание уделяется ознакомлению со специальными способами решения отдельных типов задач. Это часто приводит к тому, что учащиеся не приобретают умения самостоятельно анализировать и решать различные типы задач. Поэтому проблема овладения общим приемом решения задач продолжает оставаться актуальной и должна разрабатываться в методике обучения математике.
Общий прием решения задач включает: знание этапов решения, методов (способов) решения, типов задач, обоснование выбора способа решения на основании анализа текста задачи, а также владение предметными знаниями: понятиями, определениями терминов, правилами, формулами, логическими приемами и операциями.
К этапам решения можно отнести:
1) анализ текста задачи;
2) перевод текста на язык математики;
3) установление отношений между данными и вопросом;
4) составление плана решения задачи;
5) осуществление плана решения;
6) проверка и оценка решения задачи.
Анализ текста задачи.
Работа над текстом задачи включает семантический, логический и математический анализ.
1. Семантический анализ направлен на обеспечение понимания содержания текста и предполагает:
выделение и осмысление:
отдельных слов, терминов, понятий, как житейских, так и математических,
грамматических конструкций ("если… то", "после того, как…" и т.д.),
количественных характеристик объекта, задаваемых словами "каждого", "какого-нибудь", "любое", "некоторое", "всего", "все", "почти все", "одинаковые", "столько же", "поровну" и т.д.;
восстановление предметной ситуации, описанной в задаче, путем упрощенного пересказа текста с выделением только существенной для решения задач информации;
выделение обобщенного смысла задачи - о чем говорится в задаче, указание на объект и величину, которая должна быть найдена (стоимость, объем, площадь, количество и т.д.)
2. Логический анализ предполагает:
умение заменять термины их определениями;
выводить следствия из имеющихся в условии задачи данных (понятия, процессы, явления).
3. Математический анализ включает анализ условия и требования задачи.
Анализ условия направлен на выделение:
а) объектов (предметов, процессов);
б) величин, характеризующих каждый объект;
в) характеристик величин (числовые значения, известные и неизвестные данные, отношения между известными данными величин).