Смекни!
smekni.com

Міжпредметні зв’язки на уроках хімії при розв’язуванні хімічних задач (стр. 5 из 5)

Мабуть, якщо спрощений варіант рішення неможливий, задачі відповідних типів в задачник не потрапляють. Проте задачі, для вирішення яких потрібен апарат вищої математики, наші студенти повинні вирішувати обов'язково, інакше третина учбового матеріалу по аналітичної хімії залишиться без необхідних вправ і ілюстрацій.

Для економії часу і забезпечення точності розрахунків на заняттях по аналітичної хімії слід використовувати комп'ютери і специфічне програмне забезпечення так само широко, як сьогодні використовуються мікрокалькулятори.

Очевидно, при складанні задачників нового покоління, а також при організації розрахункових занять по курсу аналітичної хімії повинна враховуватися можливість і необхідність рішення нестандартних (зокрема, ускладнених в математичному відношенні) розрахункових задач.

Курс вищої математики вивчається студентами-хіміками в 1-2 семестрах (тобто до вивчення аналітичної хімії) в об'ємі 200-300 аудиторних годин. В середньому на нього відведено 278 годин, у тому числі 130 лекційних. Типова програма курсу вищої математики, на жаль, не профілізована для хімічних напрямків і фактично є урізаним варіантом курсу вищої математики для математиків. Наприклад, вивчаючи в курсі аналітичної хімії розділ «Кінетичні методи аналізу», студент повинен мати уявлення про диференціальні рівняння (вони описують кінетику індикаторних реакцій) і уміти вирішувати їх.

Програма модернізується раз на 5-10 років без істотної зміни змісту. В різних учбових закладах міняється не стільки перелік розділів курсу, скільки частка годин, що виділяється на вивчення кожного розділу, при цьому використовуються одні і ті ж підручники.

Це неодноразово викликало пропозиції по зміні структури математичної підготовки в цілому або змісту курсу вищої математики.


Висновки

Міжпредметна інтеграція природничо-наукових дисциплін, яка спрямована на формування в учнів уміння встановлювати зв'язки між знаннями різних систем, закріплює не тільки взаємозв'язок, але й взаємопроникнення окремих навчальних предметів і сприяє системному й цілісному пізнанню світу, яке є однією з умов, що забезпечує розумовий розвиток учнів.

Аналізу принципів, методів і форм навчання в контексті того, що розумова діяльність є динамічним процесом формулювання та розв'язування різноманітних задач (через оперування матеріальними чи інформаційними моделями) і що розвиток мислення учнів можливий лише за умови їх активної участі в цьому процесі, присвячені дослідження Г.Балла, Ю.Машбиця, Л.Фрідмана та інших. Проте розробка інтегрованих підходів до розвитку мислення у диференційованому навчанні дисциплін природничо-наукового циклу засобами використання пізнавальних навчальних задач сьогодні чекає на вирішення як у педагогічній науці, так і на практиці.

Роль математики, як найсильнішого знаряддя хімії, посилилася з розвитком фізичної хімії, хімічної термодинаміки і кінетики, теорії розрахунків хімічної апаратури та ін.

Використання прийомів вищої математики в рішенні хімічних і хіміко-технологічних питань дозволяє отримати найцінніші результати, досягнення яких іншими шляхами часто виявляється неможливим.

Види мислення відрізняються специфікою об'єкта (предмета), пов'язаного, як правило, із визначеною науковою галуззю й відповідною їй сукупністю методів, і згодні з науковцями, які виділяють природничо-наукове мислення як окремий вид мислення, тому що природничо-наукові дисципліни мають багато в чому спільний об'єкт і методи дослідження, крім того, їх об'єднує велика кількість міжпредметних понять (атом, молекула, речовина, координата, переміщення; а також закони збереження енергії, правило заповнення електронних орбіт атомів та ін.).

Мислення часто розгортається як процес розв'язування задач, які можуть виникати як по ходу виконання тієї чи іншої практичної діяльності, так і бути навмисне створеними (навчальні задачі). І в тому, і в іншому випадку задача виступає як об'єкт і предмет розумової праці людини.

Багато дослідників дуже гостро ставлять питання про необхідність спеціального навчання школярів раціональних прийомів розв’язування розумових задач, при цьому вони підкреслюють, що ці прийоми мають бути вчителем сформульованими, донесеними до свідомості учнів і спеціально відпрацьованими до рівня звичайних прийомів мислення.

Предметна галузь обумовлює такі особливості природничо-наукового мислення: теорії не приймають вид формалізованих математичних побудов; ставиться питання про міру точності: «Чи приведе невизначеність у вихідних умовах до визначеного висновку?»; з'ясовуються умови застосування закону, умови, в яких досліджуються відносини об'єктів; більшість природничо-наукових понять відбивають властивості предметів, але виражаються за допомогою кількісних відносин, – математичною залежністю між характеристиками того самого предмета й відповідно відбивають властивості, а не відносини; багатоваріантність умов, у яких може діяти той самий природний закон, призводить до особливої складності, актуальності й неможливості алгоритмізації процесів синтезу в природничо-науковому мисленні.

Цілеспрямовану зміну типу мислення учнів, що проектується цілями, змістом і методами навчання, можна реалізувати, спираючись на модель діяльності навчання як розв’язування задач.

1. Розв’язування задачі, як правило, складається з розв'язування множини підзадач, серед яких вирізняються дві підмножини: перша – це самостійні етапи розв’язку вихідної задачі, особливо, якщо остання містить кілька шуканих величин; друга – це підзадачі, що виникають у випадку, якщо розв’язувач має утруднення й розбиває певний етап розв'язку на підетапи. Такі підзадачі є допоміжними за відношенням до вихідної задачі (аналіз).

2. Кожний розв'язок передбачає вихід за рамки задачної ситуації який пов'язаний з пошуком засобів розв'язку задачі, насамперед із залученням знань, якими володіє розв'язувач (абстрагування).

3. Розв'язок задачі розпочинається з усвідомлення суб'єктом задачної структури, тобто з побудови моделі задачної ситуації. Така структура має відповідати реальній (об'єктивній) структурі задачі й характеризує бачення суб'єктом навчальної задачі. Визначення структури часто стає найбільш складним етапом у розв'язуванні задачі (синтез). 4. Після того як задачна структура визначена, суб'єкт із відомих йому задачних структур вибирає ту, в яку визначена структура може бути перетворена, тобто він здійснює пошук аналогічної задачної структури, яка наближає його до розв'язку задачі. Пошук аналогічної задачної структури є одним із психологічних механізмів розв'язку задачі (порівняння). 5. Розв'язок знайдено, коли суб'єкт знаходить задачну структуру, яка тотожна, на думку того, хто розв'язує, об'єктивній структурі задачі (узагальнення). 6. Контроль за вірністю розв'язку задачі, рефлексія способу її дії й оцінка її раціональності можуть розглядатися як розв'язування задач, що відмінні від звичайних навчальних задач спрямованістю на дії суб'єкта, але мають той самий операційний склад (класифікація, систематизація).

Знання суміжних предметів розширюють межі можливостей учнів відштовхуватися від відомого, тобто швидше й правильніше знаходити шлях до продуктивного засвоєння нового. Доцільність міжпредметної інтеграції при цілеспрямованому розвитку мислення в навчанні підтверджують дослідження С. Рубінштейна, який відзначав, що: «об'єкт у процесі мислення включається в усе нові зв'язки, і в силу цього виступає в усе нових якостях, які фіксуються в нових поняттях; з об'єкта, таким чином, ніби вичерпується все новий зміст; він ніби повертається кожен раз іншим боком, у ньому виявляються все нові якості».


Список використаних джерел і літератури:

1. Батунер Л.М., Позін М.Е.; «Математичні методи в хімічній техніці»; Л., «Хімія», 1971 р.;

2. Вершинін В.І.; «Сучасні проблеми методики викладання математики і інформатики»; Омськ, 1997 р.;

3. Вершинін В.І., Кукін Г.П.; «Багаторівнева вища педагогічна освіта»; Омськ, ОмГУ; 1999 р.;

4. Глінка Н.Л.; «Загальна хімія»; Л., 1988 р.;

5. Гончаренко С.У., Коршак Є.В., Павленко А.І.; «Розв’язування навчальних задач з фізики: питання теорії і методики»; К., 2004 р.;

6. Давидов В.В.; «Види узагальнення в навчанні»; М.: Педагогіка, 1972 р.;

7. Золотов Ю.А.; «Основи аналітичної хімії: в 2 кн.»; М., 1996 р.;

8. Лабий Ю.М.; «Рішення задач по хімії за допомогою рівнянь і нерівностей»; М.: Освіта, 1987 р.;

9. Некрасов Б.В.; «Основі загальної хімії»; М., 1973 р.;

10. Карапетьянц М.Х., Дракін С.І.; «Загальна хімія»; М., 1981 р.;

11. Крешков А.П.; «Основи аналітичної хімії, тт. 1–3»; М., 1977 р.;

12. Слейбо У., Пергона Т.; «Загальна хімія»; М., 1979 р.;

13. Рубінштейн С.П.; «Основи загальної психології»; СПб., 1999 р.;

14. Cкатецький В.Г.; «Наукові основи професійної спрямованості викладання математики студентам нематематичних спеціальностей» Мінськ, 1995 р.;

15. Цитович І.К., Протасов П.Н.; «Методика рішення розрахункових задач по хімії»; М.: Освіта, 1983 р.;

16. Тихомиров О.К.; «Психологія мислення»; М., 1984 р.;

17. Щепотин А.Ф., Черноглазкін С.Ю.; «Про теоретичні основи побудови дидактичної системи підготовки студентів» // Середня професійна освіта. – 1999. – № 2.

18. Янсон Э.Ю.; «Теоретичні основи аналітичної хімії»; М., 1987 р.;

19. http://forum.xumuk.ru/index.php?showtopic=11238