2. На основании полученного рисунка сформулируйте теорему записать ее условие и заключение;
3. Сообщить идею доказательства;
4. Сообщить план доказательства;
5. Провести доказательство с четким выделением его шагов;
6. Осуществить закрепление его доказательства;
7. Рассмотреть с учащимися задачи на примере признака.
Что можно сказать о ∆ АВС и ∆ А1В1С1 ?
После о том, что эти треугольники равны, формулируем теорему. Выясняем: что дано в этой теореме, а что надо доказать. Рядом с рисунком 1 краткую запись теоремы:
Дано: АВ =А1В1; АС=А1С1;
А = А1Доказать:
∆ АВС = ∆ А1В1С1Сообщаем ученикам идею доказательства: рассмотреть третий ∆ А1В2С2, который: 1. равен ∆ АВС и расположен таким образом, что 2. его вершина В2 лежит на полупрямой А1В1; 3. вершина С2 находится в той же полуплоскости относительно прямой А1В1, в которой лежит вершина С1.
Теорема будет доказана, если установлено, что ∆ А1В2С2 совпадает с ∆ А1В1С1.
Составляем план доказательства:
1. Рассмотрим ∆ А1В2С2, о котором говорилось выше;
2. Докажем, что вершина В2 совпадает с вершиной В1;
3. Докажем, что луч А1С2 совпадает с лучом А1С1;
4. Докажем, что вершина С2 совпадает с вершиной С1;
5. Сделаем заключение о равенстве ∆ АВС и ∆ А1В1С1.
Приводим краткую запись доказательства на доске (оно выполняется учителем по ходу изложения, записывать доказательство в тетрадях не нужно),
1) ∆ А1В2С2 = ∆ АВС аксиома IV3
2) т.к. А1В1 = А1В2, то В2 совпадает с В1 аксиома IV1
3) т.к.
В1А1С1 = В2А1С2, то лучи А1С2 и А1С1 совпадаютаксиома IV2
4) т.к. А1С1 = А1С2, то точки С2 и С1 совпадают аксиома IV1
5) ∆ А1В2С2 и ∆ А1В1С1 совпадают п.п. 2,4
6) ∆ АВС = ∆ А1В1С1 п.п. 5,1
Вопросы для закрепления
1. Как был выбран ∆ А1В2С2?
2. Почему вершина В2 совпадает с вершиной В1 ?
3. Зачем нужно доказывать совпадения лучей А1С2 и А1С1 ?
4. Почему вершина С2 совпадает с вершиной С1 ?
5. Почему делается вывод о равенстве ∆ АВС и ∆ А1В1С1
Рассмотрим еще одну методическую схему изучения этого признака:
1. рассмотреть решение ряда подготовительных задач;
2. доказать первый признак рав-ва треугольников.
Подготовительные задачи:
1) отрезки А1В1 и А1В2 равны отрезку АВ и отложены на полупрямой А1В1. Что ещё можно сказать о расположении отрезков А1В1 и А1В2 ?
2) Углы В1А1С1 и В1А1С2 равны углу А. Что можно сказать о расположении углов В1А1С1 и В1А1С2 ? Что можно сказать о расположении лучей А1С1 и А1С2, если они находятся в одной полуплоскости относительно прямой А1В1?
3) Треугольники А1В1С1 и А1В2С2 равны, вершина В2 лежит на полупрямой А1В1, вершина С2 лежит в одной полуплоскости (относительно прямой А1В1) с вершиной С1. Докажите, что эти треугольники совпадают, т.1. вершинаВ2 совпадают с вершиной В1, вершина С2 – с вершиной С1.
Рассмотренная первой методическая схема доказательства основана на применении репродуктивного метода обучения и он наиболее эффективен при изучении третьего признака равенства треугольников, наиболее сложного.
Схема решения задач па данной теме:
1) ученики читают задачу один – два раза, выполняют рисунок, записывают условие и требования задачи. Рассказать о требованиях к построению чертежей при решении задач по планеметрии.
2) Учитель направляет разбор задачи вопросами: “Что дано в задаче?”, “Что говорится о таком – то треугольнике?”, “Что ещё дано?”, “Что требуется выполнить в задаче?”, “С чего начнем выполнение рисунка?”, “Что ещё надо нарисовать?” и т. д.
3) Далее приступаем к поиску решения задачи:
Дано:
Доказать:
Доказательство:
У данных треугольников есть по одной равной паре соответствующих сторон и одному равному углу прилежащему к этой стороне. Для док-ва рав-ва треугольников по II признаку следует найти ещё пару равных углов
- как вертикальные по II признаку рав-ва треугольников.№32, §3, стр.47 Дано: А, В, С, Д лежат на одной прямой;
Доказать:
Доказательство:
1)
;2)
- по I признаку равенства треугольников;3)
;4)
- по I признаку равенства треугольников;Дано:
Доказать:Доказательство:
1)
(по условию); (по условию); - по III признаку равенства треугольников;2)
;3)
- по I признаку равенства треугольников;4)
и - по III признаку равенства треугольников;Ч.т.д.
Традиционно-синтетические аспекты занимают ведущее положение в геометрии, служат основой изложения остального материала, способствуют формированию пространственного представления и воображения учащихся (недаром некоторые разделы традиционно-синтетической геометрии(параллельность, перпендекулярность прямых и плоскостей, жесткость треугольника) называют “строительной геометрией”).
Придавая темам: параллельные и перпендикулярные прямые, признаки равенства треугольников, свойства равнобедренного и равностороннего треугольников, окружность, описанная около треугольника (вписанная в треугольник), задача на построение; четырёхугольники, правильные многоугольники, излагаем традиционно, максимальные образовательные цели, можно увидеть в них начала систематического курса геометрии.
В качестве вспомогательного математического метода к традиционно-синтетическому рассматривается координатно-векторный метод. Подготовка к вспомогательному методу выражается в раннем введении системы координат в ознакомлении учащихся с примерами решения задач координатным или векторно-координатным методом, в использовании формул расстояния между точками, если отказаться от координатно-векторного метода. Одновременное введение традиционно-синтетического и координатного методов в начале курса может быть обеспечено применением аксиоматически смешанного типа, причем неизбежно избыточной. Аксиоматику, в этом случае, следует рассматривать как инструмент рационализации логико-математической системы учебника.
1. К.О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае»,1997г.
2.Н.М.Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990г.
3.Г.Фройденталь «Математика как педагогическая задача»,М., «Просвещение», 1998г.
4.Н.Н. «Математическая лаборатория», М., «Просвещение», 1997г.
5.Ю.М.Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999г.
6.А.А.Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000г.