Смекни!
smekni.com

Нумерация многозначных чисел в начальном курсе математики (стр. 6 из 9)

Д. Мы сделали правильный вывод.

У. Молодцы! Покрасила земляничка птичке лобик в красный цвет.

Учитель закрашивает лобик птички красным цветом.

VI. Итог урока

У. С каким правилом мы сегодня познакомились?

Д. Как надо умножать на 10, 100, 1000...

У. Сколько нулей нужно приписать, если умножаем на 100?

Д. Два.

У. Если к числу приписали четыре нуля, на какое число его умножили?

Д. На десять тысяч.

С П А С И Б О

У. Кто говорит "спасибо"?

Д. Щегол.

У. За что?

Д. За помощь.

У. Как мы помогли щеглу?

Д. Мы выполнили все задания, предложенные нам, и щегол приобрел яркую одежду.

У. Молодцы! Вы хорошо работали.

VII. Домашнее задание.

С помощью такой проверки мы выявляем уверенно ли справляется с заданием ребенок или с ошибками, какими способами он при этом пользуется. Результаты были таковы:


Рисунок 1 - результаты урока

Для продолжения нашего исследования мы провели анкетирование среди учителей начального класса Яратовской СОШ Мамбетовой Нафисы Зиннатовны, Нугумановой Алии Нурисламовны, Ишкуватовой Гульдар Азаматовны.

Для анкеты были составлены следующие вопросы:

1. Вы предпочитаете работать по учебникам Моро М.И., Петерсон И.Г., Истоминой Н. Б.?

а) Моро;

б) Петерсон;

в) Истомина;

2. Используете ли дополнительный материал для ознакомления с понятием числа?

а) да;

б) нет;

3. Все ли дети умеют считать при поступлении в школу?

а) да;

б) нет;

4. Проводите ли Вы на уроках математики устный счет?

а) да;

б) нет;

Результаты анкетирования отражены в диаграммах:

Рисунок 2 - ответы на первый вопрос

Рисунок 3- на второй вопрос

Рисунок 4 - на третий вопрос

Рисунок 5 - на четвертый вопрос

Результаты анкетирования на первый вопрос были таковы:

Многие учителя работают по учебнику традиционной Моро, так как они к ним привыкли и легче по ним работать.

На второй вопрос:

80% учителей используют наглядные пособия;

20% учителей не используют наглядные пособия.

На третий вопрос:

55% - умеют считать;

45% - не умеют считать.

На четвертый вопрос:

75% - проводят устный счет;

25% - не проводят устный счет.

2.3 Апробирование и анализ результатов экспериментальной работы по выявлению особенностей изучения нумерации многозначных чисел младшими школьниками

После опыта работы учителей начаьных классов решили провести экспериментальную работу на базе Яратовской СОШ Баймакского района.

Опытно-экспериментальную работу решили провести в три этапа.

I этап - констатирующий.

II этап - формирующий.

III этап - контрольный.

Цель эксперимента: выявить, знают ли дети нумерацию многозначных числел и могут ли их применять.

Задачи:

1) выбрать исследовательские методы для экспериментального класса;

2) провести исследование и апробировать результаты.

Рассмотрим этапы опытно-экспериментального исследования.

I. Констатирующий этап.

Провели контрольный срез знаний учащихся.

Учащимся была предложена проверочная работа (Приложение 4)

1) запишите число, меньшее 100 000 на 5; большее 19 998 на 3;

2) запишите "соседей" чисел: 60 000; 20 000; 100 000;

3) сравните числа: 500 и 5 000; 7 003 и 7 030; 36 543 и 36 345;

4) вставьте вместо точек необходимые числа:

1 963 < 19. ., 100 012 > 1000...

5) Сколько всего сотен в числе 5 400?

6) Сколько метров в 5 400 см?

7) Сколько метров и сантиметров в числе 7 632 см?

Выразите в более мелких единицах: 9 сот.7 дес. - в десятках, 9 м 7 дм - в дециметрах.

Критерии оценки проверки работ:

Все правильно - отлично

2 ошибки - хорошо

3 ошибки - удовлетворительно

4 ошибки - неудовлетворительно

Данные по итогам проверочной работы мы зафиксировали в диаграмме:

Рисунок 5 - Данные проверочной работы экспериментального класса.

"5" - 28% учащихся;

"4" - 45% учащихся;

"3" - 20% учащихся;

"2" - 7% учащихся.

Таким образом, в результате сравнения полученных данных проверочной работы, мы выявили, что данный класс находится на среднем уровне сформированности понятия многозначных чисел.

На этой основе сделали вывод: что необходимо провести систематические работы с устными упражнениями в различных их видах и на разных этапах урока.

II. Формирующий этап.

На втором этапе нами была проведена формирующая работа по развитию у учащихся нумерации многозначных чисел.

Провели проверочные работы, математические диктанты, устные работы:

Устная работа:

увеличить число 39 в 100 (1 000) раз;

уменьшить число 3 010 000 в 100 (1 000) раз;

прочитать число 2 456 756; 3 456 456; 2 000 000;

сколько сотен (тысяч) в числе 50 895?

Сколько цифр в десятичной системе счисления?

Математический диктант:

Выписать разрядные числа: 1 дес., 900, 320, 2 сот., 1 000, 2 тыс., 20, 735, 2 млн.

Сколько слов надо запомнить, чтобы назвать все числа от 1 до 10, 100, 1 000?

Сколько цифр в десятичной системе счисления?

Записать цифрами число:

а) 4 млн.607 тыс.,

б) указать, единицы каких разрядов и классов отсутствуют в данном числе.

Таким образом, проводимые упражнения вызывали у детей интерес - активно работали на уроках, стремились прийти к правильному результату.

III. Контрольный этап.

На контрольном этапе была проведена контрольная работа, которая содержала несколько заданий.

1. Во сколько раз сто тысяч больше десяти тысяч?

2. Написать число, которое:

а) непосредственно предшествует числу 1 100,б) непосредственно следует за числом 4 999.

3. Записать по порядку числа между 9 997 и 10 002.

4. Записать число, в котором 4 ед. III кл., 70 ед. II кл. и I кл.

5. Сколько единиц класса тысяч в числе 52 846?

6. Назвать второй разряд II класса.

7. Записать цифрами число:

а) 3 млн. 207 тыс.,

б) указать, единицы каких разрядов и классов отсутствуют в данном числе.

Результаты, полученные при проведении проверочной работы, мы зафиксировали в диаграммах:

Рисунок 6 - Результаты проверочной работы

"5" - 45% учащихся;

"4" - 35% учащихся;

"3" - 20% учащихся.

После формирующего этапа результаты стали лучше, можно сделать вывод, что при целенаправленной работе можно добиться высоких результатов. Дети стали активнее заниматься на уроках математики.

В результате эксперементальной работы, опираясь на опыты работы учителей, мы можем сказать, что ни один урок по обучению арифметических действий не проводятся без использования чисел. Так как их использование нравится детям, с другой стороны как мы уже отмечали они помогают хорошему усвоению темы, повышает качество знаний. И самое главное, дети быстрее учатся считать, провести предметный счет, решать арифметические задачи, выяснить конкретный смысл арифметических действий.

Как отмечали учителя, применение счетного материала помогает провести уроки на должном уровне, пробудить интерес к предмету, довести до автоматизма вычисления, которые необходимы детям в жизни.

Выводы

Из вышеизложенного мы пришли к такому выводу, что успех развивающей системы учащихся по изучению понятия многозначных чисел, зависит от ее содержания, от характера задания учителя, от соблюдения им педагогически продуманной последовательности нарастания трудностей в работе. Каждый урок должен быть хорошо продуманным.

Работая в начальных классах, необходимо учитывать те общие задачи, которые преследует обучение математике в средней школе, и правильно оценивать роль начального обучения в решении этих задач. Многие вопросы, относящиеся к программе математики для средней школы, должны быть усвоены уже в начальных классах в такой форме и так прочно, чтобы они стали достоянием учащихся на всю жизнь, другие же вводятся на начальной ступени обучения только в целях подготовки к основательному их рассмотрению в следующих классах или чтобы получить возможность повысить уровень осознанности в процессе формирования тех или иных умений и навыков. Эти соображения необходимо учитывать, когда речь идет о том, что в начальных классах школы дети должны сознательно и прочно овладеть определенным, намеченным в программе кругом знаний, умений и навыков в области математики.

Апробирование результатов исследования осуществлялась в форме выступления с докладом на научно-практической конференции на тему: "Актуальные проблемы методики изучения математики в начальных классах" (11.03.2010 г). По результатам исследования написана статья "Особенности изучения нумерации многозначных чисел в начальных классах". Достоверность результатов исследования определяется анализом теоретического и экспериментального материала, методами математической обработки результатов опытного исследования.

Заключение

Начальный курс математики закладывает базу для ее дальнейшего изучения. И многие навыки, которые не были сформированы в этот период, так и остаются слаборазвитыми в дальнейшем, что впоследствии создает проблемы у учеников в старших классах.

При изучении нумерации многозначных чисел можно выделить следующие ступени:

1) Знакомство с новыми счетными и разрядными единицами: десятком тысяч, сотней тысяч, единицей миллионов.

2) Счет до 1 млн. уже известными счетными единицами и новыми: десятками тысяч и сотнями тысяч.

3) Выработка прочных навыков в записи чисел до 1 млн.

4) Знакомство с понятием класса единиц и класса тысяч (I и II классы).

5) Анализ многозначных чисел по десятичному составу - выделение в числе классов и разрядов, составление числа по данным классам и разрядам.