Смекни!
smekni.com

Нумерация многозначных чисел в начальном курсе математики (стр. 8 из 9)

Оборудование. Картинки с изображением птиц; сюжетные рисунки щегла; таблица разрядов и классов многозначных чисел; таблица с логическими заданиями.

ХОД УРОКА

I. Организационный момент

Проверка организации рабочих мест.

II. Устный счет

Учебник "Математика", ч.3, с.83, № 4.

Учитель. Запишите 5 раз подряд цифру 7. Прочитайте число 77 777.

Дети. Семьдесят семь тысяч семьсот семьдесят семь.

У. Запишите подряд три раза число 80. Прочитайте число 808 080.

Д. Восемьсот восемь тысяч восемьдесят.

У. Назовите самое маленькое число.

Д.77 777.

III. Проверка домашнего задания (с.64, № 14)

У. Какие слова были зашифрованы?

Д. Дятел, стриж, сойка.

У. Кто это?

Д. Птицы.

У. Название какой птицы встретилось впервые?

Д. Сойка.

У. Что вы узнали об этой птице на уроках природоведения?

Д. Сойка - зимующая птица. Ее называют лесным полицейским, так как она предупреждает лесных обитателей об опасности. Если под деревом, на котором расположено гнездо сойки, остановятся туристы, сойка предупреждает об опасности и переносит птенцов в другое место. Она заготавливает на зиму корм. Собирает семена растений и прячет их, но очень часто забывает, в каком месте. Спустя годы на этих местах появляются молодые деревца. Так сойка помогает выращивать лес.

У. Молодцы! Правильно.

IV. Знакомство с новым материалом

У. Сегодня мы познакомимся еще с одной птичкой. Послушайте сказку.

Рассказывает учитель и показывает черно-белый рисунок птицы.

1-я часть. Жила-была птичка серенького цвета. Она очень красиво пела. Однажды прилетела птичка в птичий хор. Но дирижер - дятел - не принял ее, потому что она была некрасивая. Полетела птичка на полянку, села на ветку и заплакала. Услышала о ее горе земляничка и говорит:

Я помогу тебе, если ребята сумеют объяснить, как решаются следующие примеры.

На доске открывается запись.

5 х 10 = 50 3 х 100 = 300 4 х 10000 = 40000 2 х 1000 = 2000

Дети рассматривают запись примеров, сравнивают, анализируют и делают вывод.

Д. Чтобы умножить число на 10, 100, 1000 и т.д., надо к числу приписать 1, 2, 3 и более нулей.

У. А теперь откройте учебник на с.83, прочитайте правило и сравните с выводом, который получился у вас. Что вы можете сказать?

Д. Мы сделали правильный вывод.

У. Молодцы! Покрасила земляничка птичке лобик в красный цвет.

Учитель закрашивает лобик птички красным цветом.

VI. Итог урока

У. С каким правилом мы сегодня познакомились?

Д. Как надо умножать на 10, 100, 1000...

У. Сколько нулей нужно приписать, если умножаем на 100?

Д. Два.

У. Если к числу приписали четыре нуля, на какое число его умножили?

Д. На десять тысяч.

С П А С И Б О

У. Кто говорит "спасибо"?

Д. Щегол.

У. За что?

Д. За помощь.

У. Как мы помогли щеглу?

Д. Мы выполнили все задания, предложенные нам, и щегол приобрел яркую одежду.

У. Молодцы! Вы хорошо работали.

VII. Домашнее задание.

Приложение 3

Для интервью были составлены следующие вопросы:

1.Ф. И.О.

2. Сколько лет вы работаете в школе?

3. В каком классе работаете?

4. По какому учебнику в вашем классе организовано обучение математике?

5. Как вы изучаете нумерации в начальных классах?

6. Помогает ли использование наглядного пособия хорошему усвоению темы?

Для анкеты были составлены следующие вопросы:

1. Какие учебники больше нравятся? (Моро, Петерсон, Истоминой)

2. Используете ли дополнительный материал для ознакомления с понятием числа?

3. Все ли дети умеют считать при поступлении в школу?

Приложение 4

УДК 37.016: 51

Ибрагимова Ш.З., Vкурс,

специальность "ПиМНО", СиБашГУ.

ОСОБЕННОСТИ ИЗУЧЕНИЯ

НУМЕРАЦИИ МНОГОЗНАЧНЫХ ЧИСЕЛ В НАЧАЛЬНЫХ КЛАССАХ

Значение цифр и чисел в нашей жизни трудно переоценить. Биологи утверждают, что в составе человеческого мозга есть структуры, отвечающие за формирование устной и письменной речи. Таких структур нет ни у одного другого животного. Благодаря им человек может писать, читать, говорить, произносить разнообразные звуки. Именно из-за такого сложного строения головного мозга человек смог в первый раз произнести слово, написать букву. Теперь мы не можем себе представить жизни без алфавита и слов.

В математике таким алфавитом являются цифры, а словами - числа.

Нам нужно уметь правильно назвать и записать любое число, как бы велико оно ни было. Если бы каждое число называлось особым именем и обозначалось в письме особым знаком, то запомнить все эти слова и знаки было бы никому не под силу. Как же мы справляемся с этой задачей? Нас выручает хорошая система обозначений. Совокупность названий и знаков, позволяющая записать любое число и дать ему имя, называется системой счисления, или нумерацией.

Наша нумерация использует для записи чисел десять различных знаков. Девять из них служат для обозначения первых девяти натуральных чисел (1,2,3,4,5,6,7,8,9), "…десятый не обозначает никакого числа; он представляет собою просто пробку, "пробельный материал" при записи чисел. Значок этот называют нулем и обозначают 0". [2,7]. Значки эти называются цифрами.

Современный человек знакомится с ними еще в дошкольном возрасте. Существует целая наука - теория чисел, которая занимается их изучением.

Натуральных чисел бесконечно много: среди них нет наибольшего.

Одним из основных вопросов начального курса математики является арифметический материал. Понятие числа формируется в процессе изучения нумерации чисел. Завершающим этапом изучения арифметического материала в начальных классах являются "Многозначные числа". Тема "Многозначные числа" - заключительная и весьма ответственная тема.

"Задача изучения данной темы состоит в том, чтобы расширить у детей знания десятичной системы счисления, структуры многозначного числа, натуральной последовательности чисел и на этой основе сформировать у детей умение правильно читать и записывать многозначные числа в пределах класса миллионов" [4,227].

На этапе подготовки к изучению темы необходимо закрепить знания детей о соотношении известных им разрядных единиц, о десятичном составе трехзначных чисел, о натуральной последовательности чисел в пределах 1000. С этой целью на уроках включают, например, такое задание:

Сколько единиц в одном десятке, сколько десятков в одной сотне, на сколько одна сотня меньше тысячи, во сколько раз десяток меньше сотни и т.п.

На следующем этапе приступают к изучению нумерации многозначных чисел, состоящих из единиц I и II класса. Первые упражнения можно провести, используя нумерационную таблицу.

ТАБЛИЦА РАЗРЯДОВ И КЛАССОВ

КЛАCC ТЫСЯЧВТОРОЙ КЛАСС КЛАСС ЕДИНИЦПЕРВЫЙ КЛАСС
Сотни Десятки Единицы Сотни Десятки Единицы
трехзначные числа
четырехзначные числа
пятизначные числа
шестизначные числа

Например, на нумерационной таблице обозначено число 438000. После выяснения значения трех нулей в записи этого числа к нему прибавляют число I класса. Карточки с цифрами, обозначающими число I класса, помещаются прямо на нули в записи числа II класса. Это дает возможность наглядно иллюстриовать затем запись чисел с нулями (438107, 438120, 438007, 438127).

После усвоения шестизначных чисел учащиеся знакомятся с нумерацией 7-9-значных чисел.

На уроках по нумерации чисел важно использовать числовой материал, взятый из жизни, например, интересные числовые данные о животных и растениях и т.п.

Закреплению по нумерации помогают упражнения и преобразования натуральных чисел и величин - замена мелких единиц крупными и, обратно крупных единиц мелкими. Вначале эти задания выполняются на основе нумерации, а потом уже способы преобразований обобщаются в виде правил.

Преобразования величин сводятся к соответствующим операциям над натуральными числами: чтобы установить, сколько метров содержится в 3600 см, надо вспомнить, что в 1м содержится 100 сантиметров и выяснить: сколько сотен в данном числе (36).

В результате работы по изучению нумерации многозначных чисел дети должны уметь выполнять определенные задания с числом, например:

под диктовку правильно записать число 385 523;

прочитать числа (21325746, 100500 и т.д.);

назвать общее число единиц каждого разряда;

определить, сколько сотен (тысяч) в заданном числе;

представить число в виде суммы разрядных слагаемых;

увеличить, например, число 43 в 1000 (100) раз;

уменьшить число, например, 3034000 в 100 (1000) раз.

Наблюдения изучения темы "Нумерация многозначных чисел" показывают, что целесообразна следующая последовательность изучения данной темы:

1) повторение нумерации в пределах 10, 100, 1000 (особое внимание обращается на образование новой счетной единицы из 10 предшествующих);

2) нумерация целых тысяч до 10000 (счет единицами тысяч до 10000 в прямом и обратном порядке). Обозначение круглых тысяч при письме;

3) нумерация четырехзначных чисел:

а) счет единицами, десятками, сотнями до 10000;

б) образование и запись полных и неполных четырехзначных чисел;

в) анализ чисел;

г) округление числа до указанного разряда.

В такой же последовательности изучается нумерация в пределах 100000 и 1000000.

При изучении нумерации в пределах 100000 и 1000000 включаются упражнения на формирование понятия о классах. Учащиеся, анализируя число, выделяют не только разряды, но и классы.

"Изучение нумерации многозначных чисел не должно ограничиваться только теми уроками, которые отводятся на первоначальное знакомство с этой темой. Упражнения на закрепление устной и письменной нумерации должны быть неотъемлемой частью почти каждого урока математики. Их следует включать в устный счет, арифметические диктанты. От сознательного усвоения нумерации зависит успех овладения арифметическими действиями" [2, 223].