2) Позволяет фокусировать эмоции и помогает задействовать эмоциональную память.
3) Переводит фантазии в конструктивное русло. Метод занимает разум и позволяет контролировать блуждающие мысли, которые можно как бы положить на полку "про запас". Это бывает полезно в тех случаях, когда кажется, что лектор говорит недостаточно быстро или содержательно, чтобы поддерживать интерес.
4) Позволяет записывать суждения, которые при этом приобретают больший вес и позволяют более объективно оценивать противоположную сторону.
Карты памяти больше подходят для работы на практических занятиях. В течение одного или нескольких уроков карта памяти заполняется сведениями, которые используются и отрабатываются на занятиях. Так же после изучения какой-либо темы можно провести повторение и обобщение материала и информацию занести в карту памяти. В дальнейшем карта памяти будет всегда «под рукой» у учащегося и при необходимости вспомнить какой-либо материал ему будет достаточно просто посмотреть на соответствующую карту памяти. После определенного количества обращений к карте памяти, ее образ останется в памяти учащегося и после этого сама карта памяти ему будет уже не нужна, учащийся будет работать уже с ее образом в своей памяти. Примеры карт памяти – в приложении.
Достоинства использования карт памяти.
Гибкость.Если докладчик вдруг решит вернуться к тому, о чем говорил раньше, можно без труда включить соответствующее дополнение в карту памяти, не внося никакой путаницы.
Фокусировка внимания.Не приходится изо всех сил стараться улавливать каждое произносимое слово — вместо этого можно сконцентрировать внимание на идеях.
Более глубокое понимание.При чтении текстов или технических отчетов карты памяти способствуют более глубокому пониманию и позволяют сделать отличные записи для дальнейшего использования.
Выявление связей. На карте памяти очень четко прослеживаются связи между различными объектами и их свойствами.
Методы мышления. Применение данных методов в обучении математике обусловлено тем, что большая часть математических задач требует для своего решения каких-либо творческих исследований.
Для применения методов творческого мышления учащихся следует познакомить с методами творческого мышления: результативным мышлением, сменой парадигм и мозговым штурмом. Потом эти методы отрабатываются при решении задач. Выбор задач для отработки результативного мышления ничем не ограничивается, для отработки смены парадигм лучше взять задачи, не решающиеся «в лоб», например: «Дан куб. Найти угол между диагоналями двух смежных граней».
Для мозгового штурма лучше взять задачи, которые можно решить большим количеством способов.
Организация обучения математике с использованием технологий квантового обучения зависит от того, умеют ли учащиеся пользоваться этими технологиями или еще с ними не знакомы.
Если учащиеся умеют пользоваться технологиями квантового обучения, то работа преподавателя значительно упрощается. Подготовительная часть заключается в разбиении учащихся на группы для практических занятий в соответствии с их типами доминантности мышления и подборе музыкального сопровождения занятий. На первом занятии учащиеся получают задание придумать себе, кем они станут в будущем. На протяжении изучения всей темы учащиеся играют роль этих успешных, умных и талантливых людей. К каждому занятию каждый учащийся придумывает, чем будет полезен материал, изучаемый на уроке, человеку его профессии. Каждое занятие начинается с аутотренинга под медленную и спокойную музыку в стиле барокко. Эта музыка звучит в качестве фона на всем занятии. Далее начинается первая часть занятия, которая длится 30-40 минут. В этой части занятия рассматриваются теоретические сведения и факты, составляются карты памяти изучаемого материала. Материал преподается с применением всех трех типов модальности. Затем следует небольшой перерыв, в течение которого музыка меняется на ритмичную. После перерыва учащиеся занимаются решением задач в соответствии с тематикой занятия. В течение первой части урока учащиеся работают в общей группе, а на решение задач разбиваются на группы в соответствии со своим типом доминантности мышления.
Кабинет оформляется учащимися под присмотром преподавателя. Обязательным является наличие следующих компонентов:
1) Удобные столы и стулья.
2) Комнатные растения.
3) Успокаивающий цвет мебели и штор.
4) Математические таблицы.
5) Портреты великих математиков.
6) Хлесткие цитаты или лозунги.
7) Компьютер с видеопроектором и музыкальной системой.
8) Удобное освещение.
9) Хорошая проветриваемость.
Если же учащиеся не знакомы с основами квантового обучения и не умеют применять его технологии, то помимо работы, описанной выше, перед учителем стоит еще задача обучить учащихся основным методам квантового обучения. Первые две-три карты памяти учащиеся составляют совместно с преподавателем, на последующих занятиях учащиеся составляют карты памяти сами, а преподаватель лишь выделяет ключевые моменты и факты, которые должны в карте памяти присутствовать. Обучение ведению «Записей:ФС» не требуется, учащихся следует лишь познакомить с этим типом ведения записей. Методы творческого мышления рассматриваются и отрабатываются при решении задач. В качестве примера построения системы занятий по математике можно рассмотреть систему занятий, разработанную для проведения опытной работы.
В ходе исследований была проведена опытная работа. Она проводилась в Вятском государственном гуманитарном университете среди студентов 1 курса математического факультета. Среди трех учебных групп были выбраны 15 студентов, которые непосредственно приходили заниматься на данный факультатив, и 10 студентов было набрано в число опытной группы для сравнения полученных результатов. Основными целями моего исследования были:
· выявить возможность применения методов квантового обучения при обучении математике;
· разработка методики применения методов квантового обучения при обучении математике;
· оценка эффективности данной методики.
Цели, которые ставились перед факультативом:
Образовательные – обобщение и систематизация знаний школьного курса геометрии. Овладение учащимися методами квантового обучения.
Развивающие – Развитие творческой и мыслительной деятельности учащихся на уроке, развитие интеллектуальных качеств личности школьников таких, как самостоятельность, гибкость, формирование навыков коллективной и самостоятельной работы.
Воспитательные – прививать учащимся интерес к предмету посредствам необычных методов ведения урока; формировать умения выполнять математические записи.
Занятия проводились постоянно без длительных перерывов два раза в неделю по университетскому расписанию (два академических часа - одно занятие). Факультатив состоял из 16 академических часов. Темой данного факультатива были «Многогранники и круглые тела». Обусловлено это, прежде всего, составом слушателей, для которых было достаточно полезным повторение и систематизация изученных в школе геометрических тел и их свойств.
Поурочное планирование темы «Многогранники и круглые тела»:
1) Проведение тестов (определялись: уровень творческого мышления, уровень пространственного мышления, тип модальности мышления, тип доминантности мышления);
2) Квантовое обучение. Методы ведения записей; История возникновения и изучения стереометрии. Определение многогранника и геометрического тела;
3) Призма. Пирамида. Методы творческого мышления. Решение задач;
4) Правильные многогранники. Полуправильные многогранники. Построение сечений. Золотое сечение;
5) Тела вращения. Цилиндр. Решение задач;
6) Конус. Шар. Решение задач;
7) Объемы тел. Решение задач.
8) Выполнение заключительных тестов;
В качестве оценки развития творческого мышления был выбран тест Гилфорда в двух вариантах: первый – входной, второй - выходной. Данный тест направлен на изучение креативности, творческого мышления. Исследуемые факторы:
1) Беглость (легкость, продуктивность) – этот фактор характеризует беглость творческого мышления и определяется общим числом ответов.
2) Гибкость – фактор характеризует гибкость творческого мышления, способность к быстрому переключению и определяется числом классов (групп) данных ответов.
3) Оригинальность – фактор характеризует оригинальность, своеобразие творческого мышления, необычность подхода к проблеме и определяется числом редко приводимых ответов, необычным употреблением элементов, оригинальностью структуры ответа.
4) Точность – фактор, характеризующий стройность, логичность творческого мышления, выбор адекватного решения, соответствующего поставленной цели.
По результатам входного и выходного тестов проводился сравнительный анализ, позволивший сделать вывод о влиянии методов квантового обучения на уровень развития творческого мышления. В частности, по одному из факторов (гибкость мышления) были получены следующие результаты:
Занятия проводились в учебной аудитории Вятского государственного гуманитарного университета, оборудованной в соответствии с положениями квантового обучения, за исключением наглядных пособий – вместо них использовался видеопроектор.
Проведение опытной работы не выявило существенных преимуществ использования квантового обучения с точки зрения математических знаний и умений учащихся, уровень их творческого мышления так же повысился незначительно. Это можно объяснить небольшим сроком использования данных методов и недостатками методических разработок. С точки зрения психологии налицо возросший интерес к изучаемому предмету. Поэтому по результатам проведенных исследований можно сделать следующий вывод: идеи и методы квантового обучения можно использовать в обучении математике, и это использование будет давать положительный эффект не только в сфере математических знаний и умений учащихся, но и в контексте развития творческой личности школьника.