А зараз перевіримо ваше уміння бачити і спостерігати.
• Перед вами фотографія пам'ятника Петру І в Санкт-Петербурзі. Чому кінь не падає? Адже він стоїть на двох ногах!?
• Коли три мухи, які летять, будуть в одній площині?
• Чому табурет на трьох ніжках більш стійкий, ніж табурет на чотирьох ніжках?
Розміщення площин і прямих у просторі.
Площини називаються паралельними, якщо вони не мають спільних точок. Запис:
.Площини перетинаються, якщо вони мають хоча б одну спільну точку. Площини перетинаються по прямій. Запис:
.Паралельні площини і площини, що перетинаються, утворюють видимий об'єм наших приміщень. Ви не помічали, що площина стелі, пофарбована білим, робить кімнату вище? А якщо стіни зробити червоними, то в людини підвищується рівень адреналіну в крові. А жовтий і зелений кольори заспокоюють.
У просторі, так само, як і на площині, пряма задається двома точками. Прямі можуть бути паралельними або перетинатися, тоді вони лежать в одній площині.
Прямі в просторі, які лежать у різних площинах, та не паралельні і не перетинаються, називаються мимобіжними.
Розміщення прямої і площини.
Пряма і площина можуть перетинатися. Запис:
.Пряма може бути паралельною площині. Запис:
. У цьому випадку пряма і площина спільних точок не мають.Пряма, яка перетинає площину, перпендикулярна до цієї площини, якщо вона перпендикулярна до будь-якої прямої, що лежить у цій площині, і проходить через точку перетину. Запис:
.Відстанню від точки до площини називається довжина перпендикуляра, проведеного з цієї точки до площини.
Дві площини, що перетинаються, називаються перпендикулярними, якщо третя площина, перпендикулярна до прямої перетину даних площин, перетинає їх по перпендикулярних прямих.
II. Закріплення матеріалу.
Задачі на розглядання
Задача 1. Назвіть (рис. 1):
а) точку перетину прямої АD і площини DD1C;
б) лінію перетину площин АDD1 і DD1С;
в) в яких площинах лежить точка В;
г) три прямі, що проходять через точку D, перетинають четверту в точках А, В, С.
Рис. 1 Рис. 2
Доведіть, що точки А, В, С і D лежать в одній площині.
Задача 2 (рис. 2).Назвіть:
а) точку перетину прямої BDі площини АВС;
б) лінію перетину площини АВD і СВD;
в) в якій площині не лежить точка С.
Прямі АВ і АС перетинаються з деякою прямою в точкахК і М відповідно. Доведіть, що М, К, С, і В лежать в одній площині.
Задача 3. Назвіть (рис. 3):
а) точку перетину прямої МС і площини ВВ1С;
б) лінію перетину площин МС1С і ВСВ1;
в) в яких площинах лежить пряма МD.
Доведіть, що точки А, В, С і D лежать в одній площині.
Задача 4.Побудуйте лінію перетину (рис. 4):
а) площини АВСі прямої МК;
б) площини МКВ і АВ.
Рис. 3 Рис. 4 Рис. 5
Задача 5.Чи лежить точка К в площині паралелограма АВСD, якщо N належить прямій AD, а М належить прямій ВС (рис. 5)?
Задачі на уяву
1. Чи можуть дві різні площини мати три спільні точки, що не лежать на одній прямій?
2. Чи можуть дві різні площини перетинатися по двом прямим?
3. Прямі а, b, c не належать одній площині, але проходять через одну точку. Скільки різних площин можна провести через ці прямі, взяті по дві?
4. Площини перетинаються по прямій а. Пряма b, що лежить у площині, перетинає площину в точці А. Де лежить точка А?
5. Точка А і В та пряма СD не лежать в одній площині. Яке взаємне розміщення прямих CD i AB?
Завдання на розуміння мови математичних символів
1. Дано вирази
1) Серед цих виразів знайдіть помилкові.
2) Який із записів відповідає висловленню:
а) площини перетинаються по прямій а;
б) точка А є точкою перетину площини
і прямої а?2. Як можуть розміщатися прямі а та АВ у площинах
і ? Запишіть мовою символів.ІІІ. Домашнє завдання.
Вивчити опорний конспект, розв’язати задачі.
Запишіть висловлення мовою символів:
а) точка А перетинає площину
в точці В;б) прямі КА і КВ перетинаються в точці К;
в) пряма КН перпендикулярна до прямої МС. На перетині прямих лежить точка К.
Тестові завдання
1. а) Дано куб АВСДА1В1С1Д1. яка з точок не лежить у площині квадрата АВСД?
1) М; 2) К; 3) N; 4) Р.
б) Дано тетраедр АВСS. Яка з точок не лежить у площині трикутника АВС?
1) А; 2) Z; 3) Y; 4) X.
2. а) Якій із вказаних площин куба не належить точка А?
1) ВСД; 2) А1С1С; 3) ВВ1А1; 4) ВСС1.
б) Якій із вказаних площин тетраедра належить точка У?
1) ASB; 2) ASC; 3) BSC; 4) ZBC.
3. У просторі дано прямі а та в, які перетинаються в точці С. Скільки різних площин можна провести через ці прямі?
1) дві; 2) безліч; 3) одну; 4) жодної.
4. а) Площинитетраедра АSС і АSВ перетинаються по прямій:
1) AS; 2) AB; 3) AC; 4) SC.
б) Площини куба АВС і В1ВД перетинаються по прямій:
1) ВС; 2) ВД; 3) АВ; 4) ВВ1.
5. а) Площину ABSтетраедра можна задати прямими:
1) АВ і АS; 2) АВ і АС; 3) АС і ВС.
б) Площину грані АА1Д1Д куба АВСДА1В1С1Д1 можна задати прямими:
1) Д1Д і ДС; 2) АД і АВ; 3) АА1 і АД; 4) А1Д1 і Д1С1.
Для класів природничого профілю
Тема. Прямі та площини у просторі
МЕТА
Мета теми – закласти основи для навчання учнів конструюванню геометричних тіл, дослідженню їх властивостей і вимірюванню геометричних величин, що пов’язані з ними; продовжити реалізацію ідеї моделювання реальних об’єктів і відношень між ними за допомогою найпростіших просторових геометричних фігур і відповідних математичних відношень; сприяти розвитку в учнів навичок логічного виведення, уявлень про аксіоматичний метод.
ОСНОВНІ ВИМОГИ
В результаті вивчення теми учні повинні вміти:
- встановлювати у просторі взаємне розміщення прямих і площин, зокрема паралельність і перпендикулярність прямих, прямої і площини, двох площин;
- будувати зображення фігур і на зображеннях виконувати нескладні побудови (елементів фігур, точок перетину прямої та площини, двох площин, переріз куба, тетраедра тощо);
- обчислювати відстані і кути у просторі;
- застосовувати відношення паралельності і перпендикулярності, а також вимірювання відстаней і кутів у просторі для опису об’єктів фізичного простору.
ЗМІСТ ТЕМИ
Аксіоми стереометрії та найпростіші наслідки з них.
Взаємне розміщення двох прямих у просторі. Паралельність прямої та площини. Паралельність площин. Паралельне проектування та його властивості. Зображення фігур у стереометрії.
Перпендикулярність прямої і площини. Перпендикулярність площин. Ортогональне проектування. Вимірювання відстаней у просторі. Вимірювання кутів у просторі.
МЕТОДИЧНІ РЕКОМЕНДАЦІЇ
Однією з головних особливостей викладання стереометрії повинно бути розумне поєднання наочно-геометричного та логічного у викладі. При вивченні основних понять і фактів, пов’язаних зі взаємним розміщенням прямих і площин, слід віддати перевагу синтетичному, наочно-геометричному викладенню, а потім використовувати вектори та координати для поглиблення та розширення знань учнів при вивченні прямих і площин у просторі. Такий підхід зберігає логічні зв’язки між зазначеними питаннями. Адже для вивчення поняття вектора у просторі і його властивостей використовується паралельність прямих і площин, для введення координат у просторі – перпендикулярність прямої і площини, перпендикулярність площин тощо.
Формування просторових уявлень учнів є головним завданням даної теми. Тому важливе місце треба відвести їх навчанню зображати просторові фігури на площині і застосуванню цих зображень до розв’язування задач. І зробити це доцільно якомога раніше.
Для ілюстрації розглядуваних понять і теорем доцільно використовувати найпростіші тіла, зокрема куб і тетраедр.
У більшості навчальних посібників з геометрії відношення паралельності прямих і площин розглядається раніше перпендикулярності. Цей підхід дозволяє більш чітко і повно подати ідеї аксіоматичної побудови геометрії, сконцентрувати увагу учнів на задачах на доведення і побудову, зокрема на проекційному кресленні.
Особливу увагу необхідно приділити реалізації прикладної спрямованості викладання теми. Головним в цьому є формування чітких уявлень про взаємовідношення властивостей геометричних об’єктів (прямих, площин) і відношень між ними і предметами навколишнього середовища.
При вивченні стереометрії постійно доводиться спиратися на зв’язок між планіметричними та стереометричними поняттями та фактами. З одного боку, необхідно максимально використовувати аналогію між ними у ряді випадків. А з іншого боку, необхідно попередити необґрунтоване перенесення „плоских” результатів у простір.
Конспект уроку
Тема уроку. Основні поняття стереометрії. Просторові тіла. Аксіоми стереометрії.
Мета уроку: ознайомити учнів з основними поняттями стереометрії, сприяти формуванню в учнів уявлень про найпростіші просторові тіла, про аксіоматичний метод, розвитку навичок логічного виведення, а також застосування аксіом стереометрії та наслідків з них до розв’язування задач.