Смекни!
smekni.com

Особливості вивчення математики в профільних класах у сучасних умовах (стр. 22 из 25)

2) Доведемо єдиність.

За теоремою 2 (якщо дві точки прямої належать площині, то вся пряма належить цій площині):

. За аксіомою С3 така площина єдина.

Теорему доведено.

Картка № 3

Теорема. Якщо дві точки прямої належать площині, то вся пряма належить цій площині.

А

|

.

В

|

Опорна задача. Якщо дві площини мають дві спільні точки, то вони перетинаються по прямій, що містить ці точки.

Наслідок. Пряма і площина

не перетинаються

(немає спільних точок) перетинаються

(мають одну спільну точку)

(принаймні дві

спільні точки)

Розглянуті способи задання площини часто використовують під час побудови перерізів многогранників. Найпростішими з многогранників є куб, паралелепіпед (усі грані – паралелограми), тетраедр або трикутна піраміда (усі грані – трикутники). Якщо всі грані паралелепіпеда – прямо­кутники, його називають прямокутним паралелепіпедом. Якщо всі ребра тетраедра рівні, його називають правильним тетраедром.

Якщо жодна з двох точок не належить площині, а відрізок, що їхсполучає, має з цією площиною спільну точку, то говорять, що дані точки лежать по різні боки від площини. А якщо принаймні дві точки многогранника лежать по різні боки від площини, говорять, що площина пере­тинає многогранник. У цьому разі її називають січною площиною. Фігура, яка складається з усіх точок, спільних для многогранника і січної пло­щини, називається перерізом многогранника даною площиною (учні демонструють моделі).

V. Висновки до уроку

Домашнє завдання.

Тестові завдання

1. а) Які з наведених фігур можуть бути тільки плоскими, а які і просторовими?

1) трикутник; 2) чотирикутник;

3) п'ятикутник; 4) шестикутник.

б) Наведіть приклади фігур, які можуть бути як плоскими, так і просторовими.

2. а) Доведіть, що вершини паралелограма АВСДлежать в одній площині.

б) Дано замкнену ламану АВСДА. Відомо, що відрізки АС і ВД перетинаються. Доведіть, що вер­шини ламаної лежать в одній площині.

3. а) Дано дві прямі а і в, через які не можна прове­сти площину. Доведіть, що ці прямі не перетинаються.

б) Доведіть, що дві прямі у просторі не можуть перетинатися більше, ніж в одній точці.

4. а) Через точку проведено три прямі, які не ле­жать в одній площині. Скільки різних площин можна провести через ці прямі, якщо брати їх попарно?

5. б) Через точку проведено чотири прямі, кожні три з яких не лежать в одній площині. Скільки різних пло­щин можна провести через ці прямі, якщо брати їх попарно?

6. Точки А, В, С, Д не лежать в одній площині. Доведіть, що:

а) прямі АВ і СД не перетинаються;

б) прямі АС і ВД не перетинаються.

7. а) Три площини перетинаються попарно. Скільки утвориться ліній перетину?

б) Три прямі, що не лежать в одній площині, про­ходять через одну точку. Через кожні дві з них про­ведено площину. Скільки всього проведено площин?


Для класів з поглибленим вивченням математики

Тема. Аксіоми стереометрії, найпростіші геометричні тіла.

Взаємне розташування прямих у просторі.

Взаємне розташування прямих і площин у просторі

МЕТА

Мета теми – розширити і систематизувати відомості про властивості основних геометричних фігур на площині і в просторі. Дати систематизовані знання про паралельність і перпендикулярність прямих і площин у просторі, сформувати вміння застосовувати відповідні властивості й ознаки до розв’язування задач.

ОСНОВНІ ВИМОГИ

У результаті вивчення теми учні повинні вміти:

- застосовувати аксіоми та наслідки з них до розв’язування геометричних і практичних задач;

- доводити властивості й ознаки паралельності прямих і площин та застосовувати їх до розв’язування задач;

- будувати зображення фігур і на зображеннях виконувати нескладні побудови (елементів фігур, точок перетину прямої та площини, двох площин, переріз куба, тетраедра тощо);

- обчислювати відстані і кути у просторі.

ЗМІСТ ТЕМИ

Основні поняття і аксіоми стереометрії. Техніка виконання найпростіших стереометричних креслень. Паралельні, мимобіжні прямі та прямі, що перетинаються. Напрям у просторі. Визначення кута між мимобіжними прямими.

Паралельність прямих і площин. Паралельне проектування та його властивості. Паралельність площин. Просторова теорема Фалеса.

Перпендикулярність прямих і площин. Перпендикуляр і похила до площини. Перпендикулярні площини. Ортогональне проектування. Відстані у просторі. Кут між прямою і площиною. Двогранні та многогранні кути.


МЕТОДИЧНІ РЕКОМЕНДАЦІЇ

Однією з основних цілей вивчення стереометрії є усвідомлення учнями структури логічної побудови стереометрії. Обов’язковим завданням є розвиток логічного мислення, просторової уяви, абстрактного мислення, а також ілюстрація зв’язку з реальним життям.

Курс стереометрії по відношенню до курсу планіметрії є систематизуючим і узагальнюючим. Багато тем зі стереометрії розглядається за аналогією з відповідними темами з планіметрії (вектори, координати).

У 10 класі відбувається складний процес переорієнтації в свідомості учнів: раніше всі фігури розглядалися на одній площині, тепер і сама площина стає об’єктом, самостійною фігурою і водночас носієм всіх плоских фігур з їх численними властивостями.

Однією з головних особливостей викладання стереометрії повинно бути широке застосування геометричних образів, їх моделей і зображень, залучення учнів до їх виготовлення. Учні повинні навчитися перш за все “бачити” розміщення прямих і площин, відповідні кути і відстані, а вже потім вміти обґрунтувати свої просторові уявлення, спираючись на означення, ознаки, властивості та інші твердження.

Іншим ефективним засобом формування просторових уявлень учнів є використання системи усних вправ. Вони сприяють введенню нових понять і закріпленню вже відомих. Важливе місце треба відвести навчанню зображати просторові фігури на площині, а також виконувати нескладні побудови на зображеннях. Перш за все мається на увазі побудова різних елементів фігур (медіан, середніх ліній та ін.), точок перетину прямої і площини, двох площин. Крім того, достатню увагу треба звернути на побудову перерізів куба, паралелепіпеда, тетраедра, використанню креслень і малюнків у без клітинному зошиті з використанням різних кольорів. Безумовно ці тіла повинні з’явитися якомога раніше, тому що на них зручно ілюструвати усі поняття і твердження.

Особливу увагу необхідно приділити реалізації прикладної спрямованості викладання теми. Головним в цьому є формування чітких уявлень про взаємовідношення властивостей геометричних фігур і відношень між ними і предметами навколишнього середовища.

Корисним є вироблення необхідності обґрунтовувати всі положення і розвиток інтуїції. Постійно необхідно пропонувати учням самостійно працювати на уроці і вдома, в тому числі самостійне вивчення питання з наступним виступом біля дошки.

Труднощі перших уроків стереометрії полягають в тому, що учням необхідно оперувати тільки такими геометричними фігурами, як площина, точка, пряма. Усунення цих труднощів є можливим за рахунок введення многогранників. Підсумкові уроки можна проводити як у формі конференції, так і у формі узагальнюючої лекції.

Конспект уроку

Тема уроку. Виникнення і розвиток стереометрії. Аксіоми та наслідки з них.

Мета уроку: розширити і систематизувати відомості учнів про властивості основних геометричних фігур на площині і в просторі.

Освоївши матеріал уроку учні повинні:

знати:

- аксіоми стереометрії та наслідки з них;

- аксіоматичну побудову геометрії;

вміти:

- застосовувати аксіоми та наслідки з них до розв’язування геометричних і практичних задач.

Хід уроку

І. Вступ

Логічна побудова геометрії

Кожна наука і кожний навчальний предмет у школі оперують певним колом понять, вивчають їх властивості і відношення між ними. Наприклад, фізика вивчає такі поняття, як рух, швидкість, маса, теплота, струм тощо. Граматика оперує поняттями: речен­ня, прикметник, дієслово тощо. Геометрія – це наука про власти­вості геометричних фігур, і вона має справу з такими поняттями, як геометрична фігура.

– Які ви знаєте види фігур?

Наприклад, трикутник, круг, куб.

– Які відношення між фігурами вивчає геометрія?

Такі відношення між фігурами, як рівність, по­дібність, паралельність, перпендикулярність.

– Назвіть розглядувані пе­ретворення фігур.

Наприклад, симетрія, поворот, подібність.

– З якими геометричними величинами має справу?

Це довжини відрізка, кола, градусна міра кута, площа, об'єм.

На відміну від інших наук геометрія має специфіку в своїй побудові. Вона побудована дедуктивно.

– Що це означає?

Дедукція (від лат. deduction – виведення) у широкому розумінні – це така форма мислення, коли нова думка виводиться суто логічно з деяких даних думок-посилань. У вужчому розумінні дедукція – це такий умовивід, внаслідок якого одержуються нові знання про предмети або групи предметів на основі вже наявних знань про досліджувані предмети.