Смекни!
smekni.com

Особливості вивчення теми "Дроби" в початковій школі (стр. 6 из 8)

2.2 Ознайомлення з дробами

Ознайомлення учнів з дробовими числами у формі звичайних дробів проводиться у зв‘язку з вивченням множення і ділення багатоцифрових чисел і ґрунтується на уявленнях, знаннях, вміннях і навичках, вироблених учнями при ознайомленні з частками величин (числа). Методика ознайомлення з простими дробами ґрунтується в основному на конкретних образах часток величини, на практичному отриманні тої чи іншої частки, а потім і дробу, шляхом ділення предметів, геометричних фігур на потрібне число рівних частин тощо. Тут не допускається спроба формально дати визначення цих понять.

В залежності від підготовки класу до вивчення теми «Дроби» може бути відведено 7-8 уроків. Причому до уроків, на яких діти знайомляться з новим для них матеріалом – дробами, включається (50%) матеріал, пов‘язаний з оволодінням техніки обчислень, розв‘язуванням задач.

В результаті вивчення цієї теми учні повинні:

1) вміти називати і показувати частки з знаменниками, які не перебільшують числа 10, знати назви таких часток, як

(половини, третини, чверті);

2) вміти читати і записувати звичайні дроби із знаменниками, які не перевищують числа 10, вміти називати знаменник і чисельник дробу і показувати відповідний дріб відрізка (круга, прямокутника);

3) вміти порівняти (з опорою на малюнок) вказані вище дроби. Без опори на малюнок вміти порівняти дроби, у яких чисельник дорівнює 1 (

і т.д.);

4) вміти розв‘язувати задачі на знаходження частки числа і числа за його часткою, а також на знаходження дробу числа.

Формування названих знань, умінь і навичок досягається в процесі практичної діяльності учнів при розв‘язуванні системи спеціально підібраних задач і з застосуванням необхідного мінімуму навчального обладнання серед них:

1) набір (демонстраційний) кругів і прямокутників (паперових чи картонних), розділених на різне число часток;

2) таблиці;

3) набір паперових прямокутників (смужок) довжиною 10см чи 12см (на кожного учня по 8-10 смужок) для проведення практичних робіт;

4) карточки-завдання з математики, навчальні діафільми.

Перший з уроків, присвячених ознайомленню учнів із звичайними дробами, починається короткою бесідою, в процесі якої (із застосуванням таблиць і набору паперових фігур) активізуються уявлення учнів про частки величини – одну із рівних частин, на які поділений відрізок.

На наступному уроці відведеного для подальшого ознайомлення учнів з дробами, опираючись вже на знання учнів, розглядають важливий факт, від усвідомлення якого у подальшому залежить розуміння основної властивості дробу, розуміння способу отримання дробів з іншими знаменниками, порівняння дробів з однаковими чисельниками тощо [10; 327-328].

Як наочні посібники для ознайомлення з дробами можна використати такі.

Поділіть круг на чотири рівні частини. Як назвати кожну таку частину? Запишіть. Покажіть три чверті частки. Ви дістали дріб – три чверті. Хто може записати цей дріб? Що показує число 4? (На скільки рівних частин поділили круг). Що показує число 3? (Скільки таких частин узяли). Аналогічно учні дістають і записують інші дроби, пояснюючи, що показує кожне число.

Для закріплення здобутих знань розв‘язують такі самі вправи, які і під час знайомлення з частками за даними ілюстраціями називають і записують, які дроби зображені, або зображують дріб за допомогою креслення, рисунка. Засвоєнню конкретного змісту дробу допомагають вправи на порівняння дробів, а також розв‘язування задач на знаходження дробу числа.

Для порівняння дробів звичайно використовують ілюстрації з однаковими прямокутниками.

1

Учням пропонують накреслити в зошиті прямокутник, довжина якого 16см., а ширина 1см. Це один прямокутник. Запишемо (у першому прямокутнику записують число 1). Накресліть під першим прямокутником такий самий другий і поділіть його на дві рівні частини. (Виконують). Які частки дістали? (Другі, половини). Скільки других часток у цілому прямокутнику?

Підпишіть. Нижче накресліть такий самий прямокутник і поділіть його на 4 рівні частини. Як називається кожна частина? Скільки четвертих часток у цілому прямокутнику? Скільки четвертих часток у .половині? Що більше: одна друга чи одна четверта; одна друга чи дві четверті; одна четверта чи три четверті; дві другі чи чотири четверті? Накресліть четвертий такий самий, прямокутник і поділіть його на 8 рівних частин. Як називаються утворені частки? Скільки восьмих часток у цілому? Скільки восьмих часток в одній чверті; у половині прямокутника? Що більше: три восьмих чи одна четверта? Якому дробу дорівнює одна друга? .......

Відповіді на всі такі запитання діти дають, користуючись рисунком: порівнюючи, наприклад,

і
, вони з рисунка бачать, що
більше, ніж
того самого прямокутника. Таким самим способом порівнюють і інші дроби, але для порівняння їх використовують інші ілюстрації: наприклад, для порівняння дробів із знаменниками 3, 6 і 9 однакові прямокутники ділять відповідно на З, 6 і 9 рівних частин, а для порівняння дробів із знаменниками 2, 5 і 10 однакові прямокутники ділять відповідно на 2, 5 і 10 рівних частин. Пропонують спеціальні вправи на порівняння дробів:

1) Вставте пропущений знак «>», «<» або « = »:

;
1;
.

2) Підберіть таке число, щоб рівність (нерівність) була правильна:

5 = ; 3 > ; 1 <
10 2 8 4 2 4

Виконуючи такі вправи, учні використовують відповідні ілюстрації з прямокутниками або заново зображують дроби за допомогою, наприклад, відрізків. Так, порівн.юючи дроби

і
, учень виконує рисунок (Рис. 6) і міркує так: «Зображу на відрізку дріб
; для цього відрізок поділю на 8 рівних частин і візьму 3 таких частини; зображу на такому самому відрізку дріб
; поділю відрізок на 4 рівні частини і візьму 3 таких частини; відразу видно, що
відрізка більше, ніж
його. Запишу:
>
».

Конкретний зміст дробу дуже яскраво розкривається під час розв'язування задач на знаходження дробу числа. Ці задачі, як і задачі на знаходження частки числа, розв'язують за допомогою відповідних наочних посібників.

Наприклад, пропонують задачу. «У монтера було 12м проводу.

- всього проводу він витратив. Скільки метрів проводу витратив монтер?»