Смекни!
smekni.com

Педагогическая технология развития у учащихся направленности на диалогическое общение при групповой форме обучения на уроках физики при изучении темы "Основы электродинамики" в средней школе (стр. 5 из 15)

4. Принцип прочности обучения основан на объективных законах, выражающих методологию прочного усвоения знания. Согласно этому принципу необходимо проводить зачетные занятия, самостоятельные и проверочные работы, которые способствуют систематизации знаний, контролю прочности их усвоения. Так же необходимо следить за тем, что бы ученики осознавали материал, а не заучивали его не понимая.

5. Принцип доступности обучения. Необходимо учитывать психологию возрастных особенностей ученика, уровень подготовки ученика по смежным дисциплинам. Например, опираясь на знания учеников по математике, дают графическую зависимость величин, входящих в закон Ома.

6. Принцип научности обучения. Необходимо подчеркивать значимость научных знаний в практике жизнедеятельности людей, рассказывать о новейших исследованиях в области физики.

7. Принцип практичности обучения. Практика - основа и цель познания. Необходимо проводить лабораторные и практические занятия (сборка схем, изучение приборов, их ремонт). [34, с.297-318]

Из всего многообразия методов и форм организации учебного процесса, возможно использование:

- объяснительно-иллюстративного метода,

- метода рассказа, беседы, лекции, дискуссии,

- работы с книгой, демонстрации, иллюстрации, лабораторной, практического занятия,

- метода познавательной игры, групповых и индивидуальных,школьных и внешкольных, урочных и внеурочных форм и т.п. занятия. [29, с. 311]

Рассматриваемое мною диалоговое общение при групповой форме обучение на уроках физики при изучении темы “Основы электродинамики” можно использовать на повторительно–обобщающих занятиях, т.е. на этих занятиях предусматривается деление класса на группы, давая им задания, а затем проведение беседу между группами. Это может вызывать спор между учениками, менее активные из которых, будут постепенно включаться в диалог. (Уроки 36/11, 43/18, 51/26)

Так же можно использовать диалоговое общение на этапах усвоения новых знаний. Выдавать новый материал в компактной форме и далее предложить самостоятельную работу с учебной информацией, дополнительным дидактическим материалом. При обсуждении материала учащиеся, по мере усвоения новой информации, будут включаться в диалог, отвечать на вопросы преподавателя и учеников и начнут сами задавать вопросы, при закреплении материала, при решении качественных задач. (Уроки 33/8, 2/110)

На уроках решения задач можно дать учащимся самостоятельно решить задачи, а затем обсудить их методы решения и то, применение каких из них является более целесообразным и в каких случаях. (Уроки 4/112, 10/118, 41/16, 44/19)

Основным видом урока, при котором используется групповая форма работы, являются лабораторные занятия. Учащиеся работают в группах по 2-3 человека, обсуждают выполнение работы, полученные результаты и их физический смысл. (Уроки 40/15, 41/16)

При контроле знаний возможно использование углубленной дифференциации, при которой используется работа по группам (столам, рядам, командам), работа в режиме диалога (постоянные и динамические пары), семинарско-зачетные занятия.

При групповой форме организации учебного процесса могут решаться все типы дидактических задач: изучение нового материала, закрепление, повторение, применение знаний на практике. Возможно совместное решение как репродуктивных, так и творческих задач, однако эффективность решения последних непосредственно зависит от уровня развития группы.

Т.о. в условиях групповой работы успешно реализуются три основные диалектические связанные функции обучения: образовательная, воспитательная и развивающая.

Активизация познавательной деятельности учащихся при групповой работе ведет к повышению успешности обучения, что выражается в более высоком уровне усвоения знаний и формирования специальных и общеучебных умений и навыков.

Основной идеей группового обучения является:

- общность целей и задач;

- индивидуальная ответственность;

- равные возможности.

Учитель становится организатором самостоятельной познавательной, исследовательской, творческой деятельности учащихся. Он учит их самостоятельно добывать знания, осмысливать полученную информацию, делать выводы и аргументировать их, решать возникающие проблемы, располагать необходимыми фактами.

Глава II. Научно – методический анализ темы «Основы электродинамики.

2.1 Содержание и научно-методический анализ учебного материала. Блок-схема. Основные понятия и законы. Место и роль темы в курсе физики.

Тема "Основы электродинамики" занимает важнейшее место в курсе физики, на ее изучение отводится 30% от общего времени. Основы закладываются в основной школе в 8 классе. От уровня усвоения темы зависит ее дальнейшее понимание при последующем изучении, в 10 или 11 классе, в зависимости от выбора профиля изучения материала.

Данная тема является одной из сложнейших тем, так как большинство понятий темы абстрактны, их нельзя почувствовать, увидеть, они сложны для понимания. Учителя физики должны решать весьма сложные общеобразовательные, воспитательные задачи и задачи развития учащихся. Этим и определяется в первую очередь значение раздела "Основы электродинамики".

Тема содержит полезный материал для решения задач политехнического образования: расчеты физических величин, знакомство с различными электроизмерительными приборами, сборка электрических цепей и др.

В этой теме рассматриваются следующие вопросы:

Электризация тел, электрический заряд, два вида заряда, взаимодействие зарядов, закон сохранения зарядов, электрическое поле, действие электрического поля на электрические заряды, проводники, диэлектрики, полупроводники, конденсатор, энергия электрического поля конденсатора, элементарный электрический заряд, закон сохранения элементарного заряда, сила тока, напряжение, сопротивление, закон Ома, работа и мощность электрического тока, закон Джоуля-Ленца.

Проводятся следующие демонстрации и лабораторные работы:

Электризация тел, два рода зарядов, устройство и действие электроскопа, проводники и изоляторы, электризация через влияние, устройство конденсатора, энергия заряженного конденсатора.

Наблюдение электрического взаимодействия тел.

Взаимосвязь этих вопросов отражена в блок-схеме.

Блок схема.

2.2 Краткая историческая справка.

Еще в глубокой древности люди заметили, что янтарь, потертый о шерсть, приобретает способность притягивать к себе различные тела: соломинки, пушинки, ворсинки меха и т.д. В дальнейшем установили, что этим свойством обладают и другие вещества: стеклянная палочка, потертая о шелк, палочка из органического стекла, потертая о бумагу, эбонит, потертый о сукно или мех.

В 1745г. Голландский ученый Питер Мушенберг разослал из Лейдена сообщение об эксперименте, который вошел в физику под названием «лейденского опыта». Опыт проводился с «лейденской банкой» - первым конденсатором – два проводника, разделенных слоем диэлектрика. В стремлении усилить электрическое действие, Винклер начал соединять лейденские банки в батареи. Ему удалось таким образом получить искры, которые были видны и слышны на расстоянии до двух сот шагов.

В 1750г. Франклин изложил идею молниеотвода для предохранения зданий и кораблей от ударов молнии, а в 1953г. Описал наиболее эффективную модель молниеотвода. Так же он выдвинул теорию о том, что электричество – это особая форма материи; она состоит из частиц, размеры которых меньше размеров частиц “обычного” вещества; между электрическими частицами действуют отталкивающие силы. Он объясняет существование “стеклянного” и ”смоляного” электричества. Так в физике появились понятия положительного и отрицательного заряда.

Со второй половины XVIIIв. появилось понятие количества электрической жидкости.

С 1785 по 1789гг. Кулон проводил опыты по кручению нити, обнаруживающие пропорциональность между моментом закручивающей нити и углом, которые привели его к точным измерениям электрических и магнитных сил. Кулон заключил: “Сила отталкивания двух больших одинаково наэлектризованных шариков, обратно пропорциональна квадрату расстояния центров обоих шариков”.

В 1838г. Фарадей дает первую формулировку закона сохранения электрического заряда.

Открытие постоянного электрического тока и изучение его свойств началось в XIXв.

В сентябре 1786г. Профессор анатомии и медицины Луиджи Гальвани обнаружил факт, который спустя пять лет в “Трактате о силах электричества при мышечном движении” описал в следующих словах: “Если держать лягушку пальцами за одну лапку так, чтобы крючок (медный) проходил через спиной мозг, касался бы какой-нибудь серебряной пластинки, а другая лапка свободно могла касаться той же пластинки то как только эта лапка касается указанной пластинки, мышцы начинают немедленно сокращаться”.

В 1785г. он обобщает свои исследования и формулирует фундаментальный вывод: “Животные организму в данных опытах надо рассматривать как чисто пассивные, как простые электроскопы особого рода и, наоборот, активными являются проводники, приведенные ко взаимному соприкосновению, лишь бы они были различными”. А Вольта предлагает разделить все проводники на “сухие” – металлы, некоторые минералу, уголь, ”влажные”.

В 1800г. английский естествоиспытатель Гемфри Дэви собирает водород и кислород в отдельные сосуды и демонстрирует возможность точного определения их объемных отношений, таким образом, он проводит первый физико-химический анализ. В 1808г. он проводит электролиз щелочей и выделяет новые элементы – натрий и калий, а затем металлы щелочных земель. За ним Иоганн Риттер производит электролиз медного купороса и выделяет медь.