Смекни!
smekni.com

Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике (стр. 10 из 11)

При делении числа на 25, 250 и т.д. достаточно разделить его на 100, 1000 и т.д. и полученное частное умножить на 4. Или: сначала делимое умножить на 4, а потом полученное произведение разделить на 100, 1000 и т.д.

1) 14200: 25 = (14200: 100)

= 142
= 568;

2) 14, 4: 25 = (14,4: 100)

= 0,144
= 0,576, или

14,4: 25 = (14,4

): (25
) = 57,6: 100 = 0,576.

7. Деление на 125, 1250 и т.д.

При делении числа на 125, 1250 и т.д. достаточно разделить его на 1000, 10000 и т.д. и полученное частное умножить на 8. Или: сначала делимое умножить на 8, а потом полученное произведение разделить на 1000, 10000 и т.д.

1) 35000: 125 = (35000: 1000)

= 35
= 280;

2) 32250: 125 = (32250

): (125
) = 258000: 1000 = 258.

2.3.3 Умножение, сложение и вычитание

1. Округление одного из сомножителей.

Если один из двух сомножителей увеличить или уменьшить на несколько единиц (долей), то произведение соответственно увеличится или уменьшится на число, равное произведению другого сомножителя на прибавляемое или вычитаемое число единиц.

Рассмотрим четыре случая сокращенного умножения, основанных на этом свойстве.

а) Округляем множимое до разрядного (целого) числа, отнимая от него несколько единиц (долей), затем умножаем отдельно разрядное (целое) число и отнятые единицы (доли) на множитель и полученные произведения складываем.

.

б) Округляем множимое до разрядного (целого) числа, прибавляя несколько единиц (долей), умножаем отдельно разрядное (целое) число и прибавленные единицы (доли) на множитель и из первого произведения вычитаем второе произведение.

.

в) Округляем множитель до разрядного (целого) числа, уменьшая его на несколько единиц (долей), затем отдельно умножаем множимое на разрядное (целое) число и на отнятые единицы (доли) и полученные произведения складываем.

.

К этому способу сокращенного умножения относится умножение на 15; 150; 1,5; 0,15; 11; 111; 1,1; 0,11; 11,1; 35; 45; 65; 75; 80; 9,5; 4,5 и т.п.

При умножении на 15 умножают на 10 и прибавляют половину полученного произведения:

.

При умножении на 150 умножают на 100 и прибавляют половину полученного произведения:

.

При умножении на 11 данное число умножают на 10 и к полученному произведению прибавляют данное число:

.

г) Округляем множитель до разрядного (целого) числа, увеличивая его на несколько единиц (долей), затем умножаем множимое отдельно на разрядное (целое) число и на прибавленные единицы (доли) множителя и из первого произведения вычитаем второе произведение.

.

К этому способу сокращенного умножение подходит умножение на 9; 99; 999; 0,9; 9,9; 0,99; 19; 29; 39; 49; 69; 79; 89; 1,9; 2,9; 3,9; 4,9; 5,9; 6,9; 7,9; 8,9 и т.п. При умножении на 9; 99; 999 и т.п. умножают данное число на 10; 100; 1000 и т.п. и из полученного произведения вычитают данное число.

1)

;

2)

.

При умножении на 19; 29; 39; 49; 59; 69; 79; 89 данное число умножают на 20; 30; 40; 50; 60; 70; 80 и 90 и из полученного произведения вычитают данное число.

1)

;

2)

;

3)

;

4)

.

2. Округление слагаемых и замена сложения умножением.

На основании определения умножения и свойств изменения суммы при изменении слагаемых можно округлить слагаемые до одного и того же разрядного числа, разрядное слагаемое число умножить на число слагаемых и к произведению прибавить или из произведения вычесть разницу, которая получается в результате замены каждого слагаемого разрядным числом (целым числом).

3. Округление уменьшаемого в случае, когда вычитаемое записано в виде произведения.

Если уменьшаемое можно разложить на два слагаемых, одно из которых равно множимому вычитаемого, причем его легко отнять от уменьшаемого, то вычитание производят следующим образом:

.

2.3.4 Деление, сложение и вычитание

1. Округление делимого.

Округление делимого основано на изменении частного при изменении делимого на несколько единиц.

От увеличения или уменьшения делимого на какое-нибудь число частное соответственно увеличивается или уменьшается: увеличивается на частное, полученное от деления прибавленного числа на делитель, а уменьшается на частное, полученное от деления отнятого числа на делитель

630045: 9 = (630000 + 45): 9 = 630000: 9 + 45: 9 = 70000 + 5 = 70005.

Можно обосновать округление делимого: 1) свойствами десятичной системы счисления и 2) распределительным законом ряда умножений и делений.

Чтобы разделить число, близкое к разрядному, можно сначала разложить его на такие слагаемые, которые бы легко делились на данное число, затем каждое слагаемое разделить отдельно и полученные частные сложить.

36492: 12 = (36480 + 12): 12 = 36480: 12 + 12: 12 = 3040+ 1 =3041.

2.4 Систематизация приемов повышения вычислительной культуры для практической работы учителя

Предлагаемое в качестве приложения к выпускной квалификационной работе пособие рассчитано в основном на школьников 5–6 классов, однако многие его упражнения полезно предлагать учащимся средних и старших классов. Это пособие предназначено как для работы в классе на уроке, так и для самостоятельной работы ученика дома.

Основное назначение данного пособия – формировать у учеников прочные навыки вычислений с целыми числами, эффективно развивая внимание и оперативную память детей – необходимые компоненты успешного овладения школьным курсом математики.

Учителю на уроке оно поможет организовать, сделать более продуктивной и насыщенной устную работу, каждодневную тренировку детей в устных и письменных вычислениях.

Задания пособия позволяют предложить ученику выполнить большой объем вычислений за небольшое время. Таким образом, оттачиваются вычислительные навыки, формируется числовая зоркость, тренируется внимание, развивается память ребенка. В результате выполнения таких заданий каждый ученик приучается быстро и правильно считать, овладевает приемами самопроверки.

Все виды заданий разбиты на отдельные части. Каждая такая часть – одна порция при проведении устного счета.

Задания можно предлагать как для индивидуальной, так и для коллективной работы в классе.

В ходе устной работы на уроке с использованием заданий можно проводить математические эстафеты: ученики по очереди называют ответы отдельных примеров. В хорошо подготовленном классе каждому отвечающему можно предлагать не одно, а нескольких заданий (для такой организации эстафеты в группах заданий выделены блоки заданий).

Полезна работа в парах, когда один ученик называет ответы серии заданий соседу по парте, а тот проверяет их правильность; при выполнении следующей серии заданий ответы называет второй, а первый – проверяет. В этом случае каждому ученику предлагается для решения целая группа заданий или несколько отдельных блоков из одной или разных групп.

Цепочные вычисления предназначены в основном для самостоятельной работы учеников: даются две-три цепочки, и учащиеся записывают окончательные ответы к ним.

2.5 Содержание и анализ опытно-экспериментальной работы

Опытно-экспериментальная работа по повышению вычислительной культуры школьников была проведена в 6-а классе средней школы №51 г. Кирова.

Для эксперимента был взят общеобразовательный класс со средней успеваемостью.

В начале каждого урока ученикам предлагались карточки с заданиями на отработку одного из приемов быстрого счета (см. прилагаемое пособие). Было представлено четыре блока заданий. В первом блоке были примеры, основанные на способе группировки слагаемых, во втором – округление одного из компонентов арифметического действия, в третьем – умножение и деление на 5, 15, 25, в четвертом – применение распределительного закона. Блоки представляли собой карточки, состоящие из пяти заданий. Учащимся необходимо было не только написать ответ, но и ход решения.

Задания в карточке составлены следующим образом:

· первое задание представляло собой разобранный пример с пояснением решения;

· последующие задания были подобраны на отработку этого приема.

За каждый правильно решенный пример, мы начисляли учащимся по одному баллу, если задача вовсе не была решена, то учащийся получал 0 баллов. За все правильно решенные задания учащийся мог получить пять баллов. Таким образом, мы формировали у учащихся математические навыки по применению приемов быстрого счета.