Смекни!
smekni.com

Принцип межпредметных связей при решении химических задач. Разбор основных способов решения расчетных задач (стр. 4 из 5)

Задача № 4 . Массовая доля серебра в соли предельной одноосновной органической кислоты составляет 70,59 %. Написать молекулярную формулу этой кислоты, если известно , что она состоит из углерода , водорода и кислорода .

Решение: Запишем химические формулы кислот и её соли в условном виде:

и Аg

..Индексы х, у и z-искомые величины.

Выражая молярную массу соли серебра через молярные массы составляющих её атомов, получим:

М (Аg

) =

х

Составим уравнение, учитывая, что произведение молярной массы соли на массовую долю в ней серебра равно молярной массе серебра:

М (Аg

)

(107+12х+у+16z)

откуда 12х + у + 16z = 46.

По условию задачи одноосновная предельная органическая кислота имеет общую формулу

, или,
. Отсюда у =2х , z = 2.

Искомые числа х и у одновременно удовлетворяют двум уравнениям:

12х +у +16

2х = у

Решая систему уравнений, получим х = 1, у = 2. Следовательно, формула кислоты -

, или НСООН.

Ответ: Формула кислоты - НСООН.

Задача № 5 . После полного термического разложения 2,0 г смеси карбонатов кальция и стронция получили 1,23 г смеси оксидов этих металлов. Оксид углерода (IV) улетучился. Вычислить массу карбоната стронция в исходной смеси.

Решение: Запишем уравнение реакции:

xy

SrC

→ SrO + C
(I)

148 г104 г

2-х 1,23-у

CaC

→ CaO + C
(II)

100 г 56 г

Искомую величину- массу карбоната стронция в смеси обозначим через х: m (SrC

= x. Тогда масса карбоната кальция будет равна m (CaC
) = 2-x, а масса выделившегося оксида углерода (IV) составит m (C
) = (2-1,23) г = 0,77 г.

Составим уравнение, учитывая, что масса углерода в исходной смеси карбонатов металлов равна массе углерода в выделившемся оксиде углерода (IV):

m ( CaC

)

Подставляя числовые значения, получим:

(2-х)

откуда х=0,75 .

Ответ: масса карбоната стронция равна 0,75 г .

Задача № 6 . Рассчитать массовые доли компонентов смеси , состоящей из гидрата карбоната аммония , карбоната калия и гидрофосфата аммония, если известно , что из 38,4 г этой смеси получили 8,8 г углекислого газа и 6,8 г аммиака.

Решение:

М (

) = 114 г/моль

М (

) = 138 г/моль

М (

) = 132 г/моль

Пусть в смеси х моль

, у моль
и z моль
, тогда

114х + 138у + 132z = 38,4

Из х моль гидрата карбоната аммония можно получить 2х моль аммиака и

х моль углекислого газа:

х2х х

→ 2

Аналогично,

у у z 2z

→ 2

n (

) = 8,8/44 = 0,2 моль х + у = 0,2

n (

) = 6,8/ 17= 0,4 моль 2х+2z =0,4

Решая систему уравнений

114х + 138у + 132z = 38,4

х + у = 0,2

2х+2z =0,4

находим х = у = z = 0,1 моль

w (

) =

w (

) =

w ((NH4)HPO4 =

Ответ: w (

) = 29,7 % , w(
) = 35,9 % ,

w (

) = 34,4 %.

2) Задачи на газовые законы. Определение количественных отношений в газах.

Расчёты масс, количеств веществ и объёмов газов обычно проводят с помощью алгебраических уравнений, как правило, на основе закона Авогадро. Рассмотрим некоторые особенности составления таких уравнений.

Иногда в задачах требуется произвести вычисления с газами, при смешении которых не происходит химического взаимодействия, а образуется смесь исходных газов. В таких случаях при составлении алгебраических уравнений учитывают, что масса газовой смеси равна сумме масс газов смеси. В уравнении массу каждого газа, а также смеси представляют как произведение количества вещества газа на его молярную массу: m = n* M. В отдельных задачах при составлении уравнений принимают во внимание , что количество вещества в газовой смеси равно сумме количеств веществ газов, которые были смешаны.

Если в условии задачи задана относительная плотность D некоторого газа, имеющего молярную массу М ( х ), по другому газу, имеющего молярную массу М ( а ), то можно использовать существующую зависимость между этими величинами: D = М ( х ) / М ( а ) – выражать молярную массу газа М ( х ) в виде произведения

.

Во многих задачах рассматриваются газы, которые при смешении реагируют между собой, образуя газообразные продукты реакции. В таких случаях при составлении алгебраических уравнений учитывают, что объёмы участвующих в реакции газов относятся как коэффициенты перед формулами соединений в уравнении химической реакции. Причём объёмы газов должны быть взяты при одинаковой температуре и давлении. В алгебраических уравнениях отношение объёмов реагирующих газов иногда удобно заменять отношением количеств веществ газов.

В процессе решения задач, касающихся газов, иногда полезно использовать информацию, которую можно представить в виде неравенств. Последние иногда непосредственно следуют из условия задачи. Однако в ряде случаев их можно составлять на основе известных свойств газов. Например, для любого газа относительная плотность по водороду больше единицы: DH > 1; средняя молярная масса газа, состоящего из молекул различных соединений, находится в пределах значений молярных масс этих соединений:

и т. п.

Иногда в условиях задач объём газа даётся не при нормальных, а при каких-то других условиях. В этом случае, как обычно говорят, нужно привести объём к нормальным условиям. Для этого проще всего воспользоваться объединённым газовым законом, который математически выражается так:

.

Где V0 – объём газа при н.у., т.е. при нормальной температуре T0 = 273 K и при нормальном давлении P0 =101325 Па; V- объём газа при данной температуре T и данном давлении P.

Значение молярной массы газа, а также число молей газа можно найти при использовании уравнения Клапейрона - Менделеева:

PV=

Где P - давление газа , V- объём системы , m – масса газа, Т- абсолютная температура, R- универсальная газовая постоянная: R= 8,31 Дж / (

).

При расчётах газовых реакций нет необходимости определять число молей веществ, а достаточно пользоваться их объёмами. Из закона Авогадро и основного закона стехиометрии вытекает следующее следствие отношение объёмов газов, вступающих в реакцию, равно отношению коэффициентов в уравнении реакции. Это утверждение называется законом объёмных отношении Гей-Люссака.