Смекни!
smekni.com

Проблема формирования целостного миропонимания посредством уроков физики (стр. 4 из 8)


3. Методические особенности уроков обобщения и систематизации знаний в контексте задач формирования целостного миропонимания

3.1 Урок-зачёт и его возможности в формировании целостного миропонимания

Зачёт в Российской Федерации – это форма контроля и оценки уровня знаний, умений и навыков учащихся. Обычно он проводится педагогом как индивидуальное или групповое собеседование, опрос, практическая работа и т.п. В соответствие со спецификой предмета могут применяться письменные зачёты, с использованием карточек-заданий, таблиц на печатной основе и других дидактических средств.

В общеобразовательных учреждениях урок-зачёт проводится главным образом в старших классах. Как правило, на зачёт выносятся крупные темы учебной программы, часто уроки-зачёты проводятся после изучения какого-либо раздела. Перечень основных вопросов к уроку-зачёту, требования и рекомендации по подготовке к нему объявляется учащимся заранее. Педагог может организовать такую подготовку на уроках и специальных консультациях. Эффективность урока-зачёта во многом зависит от содержания и характера проверочных вопросов, которые целесообразно сформулировать таким образом, чтобы ученик мог в устном ответе продемонстрировать знание основных законов науки, причинно-следственных связей явлений, умение дать верное изложение конкретной темы. В ходе урока-зачёта можно достаточно эффективно реализовать закрепление, обобщение и систематизацию знаний учащихся. А если использовать нестандартные формы проведения урока-зачёта, то можно повысить интерес и мотивацию учащихся к изучению предмета, а следовательно и их уровень усвоения учебного материала, обеспечить прочность их знаний. Урок-зачёт может проводиться в форме олимпиады, семинара, конференции, диспута, интеллектуальной игры и т.д. В ходе подготовки и проведения урока-зачёта по физике происходит повторение, обобщение и систематизация основных положений теории, законов и закономерностей, объясняющих разнообразные физические процессы и явления, вычленяются факты, необходимые для дальнейшего, в том числе и самостоятельного изучения физики; у учащихся формируется целостная система знаний, умений и навыков, в которую гармонично входят и обще учебные умения и навыки.. Урок-зачёт способствует развитию познавательных способностей учащихся при выполнении таких мыслительных операций, как анализ, синтез, конкретизация и др., повышению качества знаний и развитию мышления школьников. Это открывает большие возможности для формирования у них завершённых представлений о современной ФКМ (на уровне содержания школьного курса физики), позволяет показать в ней место каждой изученной теории, систематизировать знания о теории познания и о роли практики в познании.

Таким образом, урок-зачёт позволяет в полной мере решить задачу формирования у школьников целостного миропонимания.

3.2 Методические особенности формирования механической картины мира

Становление механической картины мира связывают с именами Г. Галилея, И. Кеплера и особенно И. Ньютона. Формирование механической картины мира потребовало несколько столетий; практически оно завершилось лишь в середине XIX в. Механическая картина мира возникла на основе классической механики, обобщения законов движения свободно падающих тел и движения планет, а также создания методов количественного анализа механического движения в целом. Эту картину следует рассматривать как важную ступень в познании человеком окружающего мира. Рассмотрим основные черты механической картины мира. Её основу составляет идея атомизма, состоящая в том, что все тела (твёрдые, жидкие, газообразные) состоят из атомов и молекул, находящихся в непрерывном тепловом движении. Взаимодействие тел как при их непосредственном контакте (трение, силы упругости), так и на расстоянии (гравитационные силы). Всё пространство заполняет «всепроникающий эфир» - среда, в которой распространяется свет. Атомы рассматриваются как некие цельные, неделимые «кирпичики»; соединяясь друг с другом, они образуют молекулы, а те в свою очередь – тела. Природа этого соединения не рассматривается.

Выделяют четыре принципиальных момента механической картины мира:

1. мир в механической картине построен на едином фундаменте – на законах механики Ньютона. Все наблюдаемые в природе превращения, тепловые явления сводятся на уровне микроявлений к механическому движению атомов и молекул (их перемещениям, столкновениям, соединениям и разъединениям). Открытие закона сохранения и превращения энергии, казалось бы, окончательно доказывает механическое единство мира – все виды энергии можно свести к энергии механического движения.

С такой точки зрения мир выглядит стройной гигантской машиной, построенной и функционирующей по законам механики. Даже исследования электрических и магнитных явлений сначала не подрывали, а лишь усложняли и дополняли механическую картину мира. Например, под этим углом зрения может рассматриваться, и в прошлом рассматривалось, внешнее сходство закона Кулона с законом всемирного тяготения.

2. механическая картина мира исходит из представлений, что микромир аналогичен макромиру.

Механика макромира хорошо изучена; раньше считалось, что точно такая же механика описывает движение атомов и молекул. Частицы, из которых состоят тела, движутся и сталкиваются так же, как сами тела. Таким образом, механическое мировоззрение видит в малом то же, что и в большом, только в меньших размерах.

3. в механической картине мира отсутствует развитие, то есть мир считается в целом таким, каким он был всегда. То есть центром механического мировоззрения является представление об абсолютной неизменности природы, ведь все процессы и превращения сводятся только к механическим перемещениям и столкновениям атомов.

4. в механической картине мира все причинно-следственные связи – однозначные, здесь господствует лапласовский детерминизм, согласно которому, если известны начальные данные системы, то можно точно предсказать её будущее.

Несмотря на то, что в середине XIX в. Д. Максвелл, а затем и Л. Больцман ввели в физику принципы вероятности, механическая картина мира господствовала в естествознании до середины второй половины XIX в. При формировании у учащихся механической картины мира необходимо обязательно указать на то, все законы классической механики имеют границы применимости, справедливы только для инерциальных систем отсчёта, то есть только равномерное прямолинейное движение системы отсчёта не влияет на механические процессы, а в классах с углубленным изучением физики или на кружке по физике стоит раскрыть принцип относительности Галилея.

3.3 Методические особенности формирования электромагнитной картины мира

Электромагнитная картина мира начала формироваться во второй половине XIX в. на основе исследований в области электромагнетизма. Основную роль здесь сыграли исследования М. Фарадея и Д. Максвелла, которые ввели понятие физического поля. В процессе формирования этого понятия на смену механической модели эфира пришла электромагнитная модель: электрическое, магнитное и электромагнитные поля трактовались первоначально как разные "состояния" эфира. Впоследствии необходимость в эфире отпала. Пришло понимание того, что электромагнитное поле само есть определенный вид материи и для его распространения не требуется какая-то особая среда.

Электромагнитная картина мира продолжала формироваться в течение трех десятилетий XX в. Она использовала не только учение о магнетизме и достижения атомистики, но также и некоторые идеи современной физики (теории относительности и квантовой механики). После того как объектом изучения физики наряду с веществом стали разнообразные поля, картина мира приобрела более сложный характер, но все равно это была картина классической физики. Основные ее черты, следующие. Согласно этой картине мира материя существует в двух видах - веществе и поле, между которыми имеется непроходимая грань: вещество не превращается в поле и наоборот. Известны два вида поля - электромагнитное и гравитационное, соответственно - два вида фундаментальных взаимодействий. Поля, в отличие от вещества, непрерывно распределяются в пространстве. Электромагнитное взаимодействие объясняет не только электрические и магнитные явления, но и другие оптические, химические, тепловые. Теперь все стремятся свести к электромагнетизму. Вне сферы господства электромагнетизма остается лишь тяготение. В качестве элементарных "кирпичиков", из которых состоит вся материя, рассматриваются три частицы - электрон, протон и фотон. Фотоны - кванты электромагнитного поля. Корпускулярно-волновой дуализм "примиряет" волновую природу поля с корпускулярной, т.е. при рассмотрении электромагнитного поля используются, наряду с волновыми, и корпускулярные (фотонные) представления. Элементарные "кирпичики" вещества - электроны и протоны. Вещество состоит из молекул, молекулы из атомов, атом имеет массивное ядро и электронную оболочку. Ядро состоит из протонов. Силы, действующие в веществе, сводились к электромагнитным. Эти силы отвечают за межмолекулярные связи и связи между атомами в молекуле; они удерживают электроны атомной оболочки вблизи ядра; они же обеспечивают прочность атомного ядра (что оказалось неверным). Электрон и протон - стабильные частицы, поэтому атомы и их ядра тоже стабильны. Картина, на первый взгляд, выглядела безупречно. Но в эти рамки не вписывались такие, как считалось тогда, "мелочи", как, например, радиоактивность и др. Скоро выяснилось, что эти "мелочи" являются принципиальными. Именно они и привели к "краху" электромагнитной картины мира. Электромагнитная картина мира представляла огромный шаг вперед в познании мира. Многие ее детали сохранились и в современной естественнонаучной картине мира: понятие физического поля, электромагнитная природа сил, отвечающих за различные явления в веществе (но не в самих атомах), ядерная модель атома, дуализм (двойственность) корпускулярных и волновых свойств материи и др. Но и в этой картине мира также господствуют однозначные причинно-следственные связи, все таким же образом жестко предопределено.