2. Существенно важно, чтобы учитель математики, школьные учебники демонстрировали подлинные образцы культуры мышления. Ведь учащиеся в своей мыслительной деятельности естественно подражают учителя, учебнику. И если они при этом находят дефектные образцы, если сам учитель, а тем более учебник допускает погрешности в логике изложения, в основании, то, конечно, трудно ожидать от учащихся высокой культуры мышления.
3. Культуру мышления можно привить ученику лишь тогда, когда он сам будет работать над овладением этой культурой, над постоянным ее совершенствованием. Поэтому очень важно вовлечь учащихся в активную работу по самовоспитанию, добиться, чтобы они рассматривали воспитание культуры мышления как личностно значимую задачу. Конечно, учитель математики должен оказывать каждому ученику помощь в этой трудной работе.
Важно развить у учащихся желание и привычку к самоконтролю и самооценке хода своего мышления, своих умственных действий. Начинать надо с организации взаимоконтроля и взаимооценки, постепенно переводя их в самоконтроль и самооценку.
4. Наконец для того, чтобы умения и навыки культуры мышления учащихся были осознанными, а ведь только в этом случае они будут достаточно эффективными и прочными, и для того, чтобы дать учащимся способ ориентировки в выполнении умственных действий, необходимо включить в содержание обучения математике систему определенных теоретических знаний.
Литература
1. Вейль Г. Математическое мышление: Пер. с англ. и нем. / Под ред. В.В. Бирюкова и А.Н. Паршина. – М.: Наука. Гл. ред. Физ.-мат. лит., 1989. – 400 с.
2. Далакан А.А. Больше внимания геометрическим построениям. // Математика в школе, №1, 1980, с. 25–27.
3. Клименченко Д.В. К вопросу психологии мышления учащихся при решении задач. // Математика в школе №5, 1987 г., с. 26–29.
4. Козлов С.Д. Наши новые старые знакомые. // Математика в школе, №2, 2001 г., с. 12–15.
5. Маслова Г.Г. Методика обучения решению задач на построение. – М.: Просвящение – 1961 г. – с.
6. Пикус А.Л. Вопросы теории и методики геометрических построений в пространстве. Ленинград, 1956 г. – с.
7. Погорелов А.В. Геометрия: Учеб. пос. для 6–10 кл. сред. шк. – м., Просвещение, 1986, – 302 с.
8. Прокофьев М.А. Факультативные занятия: перспективы развития. // Советская педагогика, №9, 1986 г., – с. 16–24.
9. Семушин А.Д. Методика обучения задач на построение по стереометрии. Издательство Академии педагогических наук РСФСР. Москва – 1959 г. – 235 с.
10. Стратилатова П.В. Сборник статей по вопросам преподавания геометрии в средней школе. Государственное учебно-педагогическое издательство Министерства просвещения РСФСР Москва – 1958 г. – 286 с.
11. Фридман Л.М. Психолого-педагогические основы обучения математике в школе. – М.: Просвещение, 1983, – 160 с.
[1] Пиаже Ж. Как дети образуют математические понятия.
- Вопросы психологии, 1966 № 4, с. 133.