Смекни!
smekni.com

Развитие логического мышления учащихся при решении задач на построение (стр. 17 из 28)

Если искомый элемент (или элементы) принадлежит классу К, определяемому выбранным набором инстру­ментов, то задача является разрешимой при выполнении этими инструментами конечного числа операций.

Отсюда, естественно, следует, что возможность ис­пользования большого числа различных инструментов расширяет, вообще говоря, класс конструктивных эле­ментов и тем самым увеличивает число задач, допускающих точное решение.

В теории геометрических построений вопрос о необ­ходимости привлечения произвольных элементов для ре­шения (точного или приближенного) задач на построе­ние рассматривается в ряде работ; на основании тео­ремы, утверждающей, что при наличии среди заданных элементов двух различных точек класс конструктивных элементов, полученный при использовании циркуля и ли­нейки, образует счетное, всюду плотное множество, до­казывается, что любая задача на построение может быть решена при помощи циркуля и линейки без при­влечения произвольных элементов либо точно, либо при­ближенно с любой степенью точности, если среди задан­ных элементов имеются по крайней мере две различные точки.

2.2.3. Выполнение геометрических построений.

Обучение учащихся геометрическим построениям преследует две цели: обучение выполнению собственно геометрических построений и обучение решению задач на построение.

Естественно, что каждому из этих вопросов в различ­ных классах должно быть уделено различное внимание. Рассмотрим первый из них.

В VI классе основное внимание обращается на обуче­ние учащихся выполнению простейших геометрических построений и их систематическому использованию при формировании и закреплении важнейших понятий: перпендикулярность и параллельность прямых, главнейшие линии в треугольнике, симметрия относительно прямой и т. д.

К концу VI класса учащиеся должны получить уже довольно прочные навыки в решении ряда конструктив­ных задач, включенных в программу VI класса, цен­ных с практической точки зрения и необходимых для дальнейшего изучения материала.

К этим построениям относятся различные приемы построения отрезка, равного данному, масштабной линейкой или циркулем и линейкой (немасштабной); действия над отрезками (в том числе деление отрезка пополам) при помощи масштабной линейки или циркуля и линейки (немасштабной); приближенное деление угла пополам циркулем; построение угла, равному данному, транспортиром или циркулем и линейкой; построение прямого угла чертежным треугольником; действия, производимые над углами малкой, транспортиром, цирку­лем и линейкой (немасштабной); построение парал­лельных и перпендикулярных прямых различными при­емами.

Умение фактически выполнять указанные выше по­строения является совершенно необходимым условием для дальнейшего успешного обучения решению кон­структивных задач, так как только при этом условии учащиеся, решая задачи, смогут уделить внимание со­держанию и методам их решения, а не только технике выполнения самого построения.

Кроме того, овладение рядом построений способствует лучшему усвоению новых понятий. Так, например, для усвоения таких важных понятий, как высота треугольника, симметрия относительно прямой и т.д., необходимо, чтобы учащиеся умели строить прямыеуглы, перпендикулярные прямые и т. д.

Правильно выполненный чертеж имеет большое зна­чение для отыскания плана решения задач на вычисление и доказательство, и наоборот, неверно выполненный чертеж часто не позволяет «увидеть» нужные соотноше­ния. Более того, неверный чертеж часто направляет мысль учащихся по неверному пути.

В VII классе перед учителем стоят более широкие задачи по изучению и использованию геометрических построений, в том числе решению задач на построение. Продолжается обучение выполнению некоторых новых построений и проводится систематическое закрепление приобретенных в VI классе умений; как и ранее, геомет­рические построения используются при формировании и закреплении геометрических понятий, а также для дока­зательства существования некоторых геометрических фигур. (Начало этой работы, доказательство существова­ния определяемых объектов, проводилось в VI классе; понятия медианы, биссектрисы, высоты треугольника, параллельных прямых вводились там на основе построе­ния.)

Новыми построениями для учащихся VII класса яв­ляются: построение центрально-симметричных фигур, деление отрезка на равные части, построение окружно­сти по трем ее точкам, деление дуг окружности нарав­ные часта, деление дуг и хорд окружности пополам, про­ведение касательной к окружности через данную точку.

Все эти построения, выполнение которых в большин­стве случаев основывается на материале, изученном в VI классе, используются затем при решении конструк­тивных задач. Необходимо, чтобы учащиеся умели фак­тически выполнять их при любом взаимном положении заданных элементов.

В VII классе продолжается формирование умений учащихся выбирать различные приемы построения в за­висимости от условия задачи. Так, например, перед ними может быть поставлен вопрос, каким способом они будут проводить через данную точку касательную к дан­ной окружности, если:

а) точка лежит вне окружности и центр окружности неизвестен,

б) точка лежит на окружности и центр окружности неизвестен,

в) точка лежит на окружности, а центр окружности находится вне чертежа.

Построение касательных для всех этих случаев уча­щиеся не должны заучивать. Они должны лишь пред­ставлять, как нужно поступить в зависимости от условия задачи, какие соотношения между искомыми и данными, элементами надо использовать для построения.

В VIII классе число новых построений весьма ограничено – это деление отрезка в данном отношении, по­строение фигур, подобных данным, построение углов по заданным значениям их тригонометрических функций и построение правильных многоугольников. Таким образом, основное внимание здесь уделяется закреплению ранее изученных построений и решению задач на построение.

2.2.4. О некоторых вопросах методики обучения решению задач на построение.

При решении с учащимися задач на построение возникают большие методические трудности. Дело в том, что при этом обычно преследуют две цели; решить данную задачу и вместе с тем научить школьников решать задачи на построение вообще, т.е. познакомить их с общими подходами к решению задач, показать, как путем анализа искомой фигуры, рассуждений, предположений отыскивается решение задачи.

Эта вторая задача значительно сложней, чем первая, и ее реализация требует от учителя большом кропотли­вой и систематической работы, особенно в средней школе, так как решение задач на построение – совер­шенно новый для учащихся вид работы. Во многих слу­чаях отыскание хода решения новой задачи является для учащихся небольшим открытием и в то же время исследованием.

Трудность усугубляется еще и тем, что часто нахождение решения задачи представляет собой весьма сложный процесс, требующий от учащихся большого внимания. Для того чтобы эта работа протекала успешно, необходимо, чтобы учащиеся заинтересовались решением задач, чтобы они поняли, насколько интересна эта работа. Поэтому всегда следует поощрять проявление учащимися изобретательности, инициативы, самостоя­тельности в отыскании решения.

С первых уроков геометрии, подводя учащихся к решению задач на построение, надо обеспечивать им неко­торую самостоятельность, а тогда, когда это необходи­мо, направить мысль учащихся на желаемый путь. Иногда, может быть, даже следует создать у учащихся иллюзию самостоятельности с тем, чтобы придать им уверенность в работе, заинтересовать их решением за­дач.

Мера самостоятельности в работе, выполняемой уча­щимися, должна определяться учителем, исходя из их возраста, подготовки, сложности решаемой задачи.

2.2.5. Введение задач на построение.

Продумывая систему работы по обучению школьников геометрическим построениям, особое внимание следует уделить методике обучения решению задач на построение.

Для подготовки учащихся к возможно более самостоятельному решению задач на построение целесооб­разно в ряде случаев вначале предлагать учащимся за­дачи подготовительного характера. Они могут быть как на построение, так и на вычисление, и на доказатель­ство. Ниже приводятся три примера использования вспомогательных задач.

Пример:

Через вершину данного угла провести прямую, образующую с его сторонами равные углы.

Угол АВС равен 620. Через вершину угла про­ведена прямая МN, перпендикулярная его биссек­трисе. Вычислить углы, которые образует эта пря­мая со сторонами угла.

Пример:

Через точку Р, данную внутри угла АВС, про­вести прямую, отсекающую от сторон угла равные отрезки.

Стороны угла пересечены прямой, перпендику­лярной его биссектрисе. Доказать, что отрезки сторон угла, отсекаемые этой прямой, равны.

Пример:

Две точки А и В находятся по одну сторону прямой L. На прямой L найти такую точку С, что­бы сумма расстояний АС и ВС была наименьшей.

Отрезок АС перпендикулярен прямой L и де­лится в точке пересечения с этой прямой пополам. Точка В находится на прямой L. Доказать, что точ­ка В находится на одинаковом расстоянии от то­чек А и С.

Такая подготовительная работа важна в начале обу­чения решению задач потому, что у учащихся VI-VII классов еще очень слабы связи между различными фактами, изучаемыми в геометрии. Кроме того, на первых порах нельзя допускать нагромождения трудностей. Необходимо работу учащихся сделать насыщенной, но посильной.

Иногда полезно от решения практической задачи перейти к задаче на построение. Здесь некоторая сюжетная задача (а стало быть, более понятная) будет сведена к математической.

В некоторых случаях к одной и той же задаче полез­ло обращаться несколько раз, с тем чтобы показать уча­щимся различные способы ее решения.