В ряде случаев различные по содержанию практические задачи сводятся к одной и той же математической. Так, решение следующих двух задач сводится к решению первой задачи предыдущего примера.
В каком месте следует построить переправу, чтобы расстояние от пункта А до пункта В было наименьшим (рис. 19).
Шириной реки в данном случае пренебрегаем.
Луч из источника света А отражает от экрана Е так, что отраженный луч проходит через точку В. Найти точку экрана, в которой отразился луч света.
Еще пример (первая задача – геометрическая, три последующие – практические):
Две точки А и В расположены по одну сторонупрямой МN. На этой прямой найти такую точку С, чтобы АСМ = ВСN.
В какую точку нужно направить луч света из точки А, чтобы он, отразившись от непрозрачного экрана а, попал в точку В (рис 20)?
Рис. 19 Рис. 20
В какую точку нужно направить упругий шар А, чтобы он, отразившись от упругой стенки, прошел через точкуВ (рис. 20)?
К двум точкам А и В подвешена гибкая нерастяжимая нить, на которую надето тяжелое кольцо. Найти положение равновесия кольца на нити.
Часто оказывается, что математическая задача весьма проста, но если вложить в нее практическое содержание, то она становится недоступной. Поэтому полезно в VI–VIII классах рассматривать с учащимися примеры того, как различные практические задачи сводятся к одной и той же математической.
Большое образовательное значение имеет ознакомление учащихся с приборами, применяемыми на практике при решении некоторых конструктивных задач. Обычно эта работа проводится после решении соответствующих задач на построение. Так, например, после рассмотрения свойства перпендикуляра, проведенного к хорде через ее середину, учащимся предлагается найти центр изображенной на чертеже окружности (возможный порядок решения задачи дан на рис. 21 и 22).
Рис. 21
Рис. 22
Анализ.
Анализ – это важный этап решения задачи, так как здесь мы составляем план построения, по существу, находим решение. Устанавливаются такие зависимости между данными и искомыми элементами, которые дают возможность построить искомую фигуру. При обучении решению задач па построение целесообразно подчеркивать аналогию, существующую между отысканием решения задач по арифметике, алгебре и геометрии ни вычисление и доказательство и анализом задач на построение. Ученик не должен считать, что для нахождения решений задач на построение нужны совершенно новые приемы. Поэтому следует помочь ученикам увидеть аналогию в применяемых приемах для отыскания решении задач на построение и задач из других дисциплин.
При решении задач по алгебре на составление и решение уравнений мы устанавливаем такие зависимости между искомыми и данными величинами. Вначале внимательно изучается условие задачи, рассматривается смысл той или иной данной величины. Для более трудных задач используем иллюстрации в виде чертежа или схемы. Предполагая задачу решенной, мы некоторую величину обозначаем буквой х (или другой буквой) и считаем ее известной. Устанавливаем зависимости между этой величиной и величинами, данными в условии задачи, причем из многообразия различных зависимостей выбираем те, которые позволят решить задачу, в данном случае составить уравнение.
Сделаем подобный анализ задачи на построение: «Построить треугольник, зная основание,меньший угол при основании и разность двух других сторон».
Чтобы найти решение, нужно вначале изучить условие задачи, посмотреть, какие элементы искомого треугольники даны. Для этого начертим произвольный треугольник А1В1С1(рис. 25) иотметим элементы, соответствующие данным по условию. Пусть это будет сторона А1С1и угол С1А1В1. Но на чертеже нет разности двух других сторон. А так как для решения задачи мы должны учесть все данные, то нужно показать и разность.
Рис. 25
Это можно сделать четырьмя способами: на меньшей стороне отложить большую от точки С1 или от точки В1либо на большей отложить меньшую и вновь откладывать как от точки В1, так и от точки А1. Если разность будет около точки В1, то тогда данные не связаны между собой и нельзя наметить план решения. Если же В1 А1отложим от точки В1на В1С1, то данные: основание, угол при основании и разность двух других сторон – будут связаны между собой, но и эта связь не дает возможности наметить план решения, она недостаточно жестка, чтобы построить, восстановить фигуру Д2C1A1B1. Лучше всего ввести разность, откладывая B1D1 = B1C1, так как в этом случае мы уже сможем восстановить фигуру С1А1Д1. Конкретизировав таким образом данные задачи, приступаем к составлению плана решения.
Построив в произвольной прямой отрезок, равный основанию, получим две вершины треугольника: А1и С1. Зная угол С1А1В1, мы можем найти и положение точки D1, где D1А1 = В1А1 – В1С1. Остается рассмотреть, как построить точку В1 зная положение точки D1. Так как С1В1 = В1D1, то точка В1равноудалена от точек С1и D1, поэтому она должна лежать на перпендикуляре Р1Q1, проведенном к отрезку С1D1через его середину. Точка пересечения прямой Р1Q1и луча А1D1и будет точкой В1. Следовательно, приходим к следующему построению. На произвольной прямой откладываем отрезок, равный основанию, и строим угол, равный данному, одна из сторон которого содержит построенный отрезок, а вершина совпадает с концом этого отрезка. На второй стороне угла откладываем отрезок, равный разности двух других сторон треугольника, и строим геометрическое место точек, равноудаленных от соответствующих концов основания и построенного отрезка. Точку пересечения этого геометрического места со стороной угла, содержащей разность, соединяем с концом основании и получаем искомый треугольник.
Из этого примера видно, что при отыскании решения задачи на построение, как и для арифметических задач, применяется аналитико-синтетический метод. Следуя от вопроса задачи, учитываем, какие элементы нам известны, и, наоборот, исходные данные комбинируем так, чтобы построить искомую фигуру. Название этапа анализ не означает, что для отыскания решения применяется только аналитический метод, подобно тому как и при доказательстве, которое иногда называют синтезом, не всегда применяется синтетический метод рассуждения. При разборе задачи, при отыскании путей ее решения анализ и синтез находятся в постоянном взаимодействии, дополняют и проверяют друг друга.
Анализ задачи связан с исходным чертежом, поэтому его необходимо выполнять аккуратно, а фигура должна иметь наиболее общую форму. Если речь идет о треугольнике, то нужно брать разносторонний треугольник; о трапеции, то не равнобочную трапецию; если о четырехугольнике вообще, то и чертим четырехугольник, который не был бы ни параллелограммом, ни трапецией. Если, например, решая задачу на построение треугольника, выберем для анализа равносторонний треугольник, то учащиеся вместо нужных зависимостей между данными и искомыми элементами могут использовать и другие связи, которые возникнут у них под впечатлением равносторонности треугольника.
Чертеж необходимо выполнять аккуратно чертежными инструментами, и лишь после приобретения навыков в вычерчивании отрезков без линейки можно выполнять его от руки. Навыки выполнения чертежей или рисунков от руки особенно необходимы для учащихся, которые в будущем будут иметь дело с техникой, где они должны уметь делать эскизы деталей. С этим они не смогут справиться, не имея простейших навыков технического рисования и черчения.
Чертеж должен строго соответствовать условию задачи. В ряде случаев целесообразно при анализе построение чертежа начинать не с данных, а с искомых элементов фигуры. Если, например, искомая окружность по условию касается некоторой прямой и некоторой окружности в данной на ней точке, то и на чертеже для анализа мы должны видеть их касающимися. Следовательно, вначале надо построить окружность, изображающую искомую, и пристроить касающиеся ее произвольные прямую и окружность.
Таким образом, для отыскания решения задач на построение первое время необходимо использовать навыки, приобретенные учащимися при решении арифметических задач, а затем уже и навыки, приобретенные при решении основных задач на построение и других математических задач. Используем также теоретический материал, в том числе и специальные методы геометрических построений.
Построение.
1. Второй этап решения задач на построение состоит из двух частей: 1) перечисление в определенном порядке всех элементарных построений, которые нужно выполнить, согласно анализу, для решения задачи; 2)непосредственное выполнение этих построений на чертеже при помощи чертежных инструментов. Действительно, решить задачу с помощью тех или иных инструментов – значит указать конечную совокупность элементарных, допустимых для данных инструментов, построений, выполнение которых в определенной последовательности позволяет дать ответ на вопрос задачи. Например, допустимыми построениями, которые определяют понятие «с помощью циркуля и линейки», являются следующие: 1) построение прямой, проходящей через две данные точки; 2)построение точки пересечения двух данных прямых; 3) построение окружности данного радиуса при заданном центре; 4) построение точек пересечения двух данных окружностей; 5) построение точек пересечении данной прямой и данной окружности.