Смекни!
smekni.com

Развитие логического мышления учащихся при решении задач на построение (стр. 18 из 28)

В ряде случаев различные по содержанию практические задачи сводятся к одной и той же математической. Так, решение следующих двух задач сводится к реше­нию первой задачи предыдущего примера.

В каком месте следует построить переправу, чтобы расстояние от пункта А до пункта В было наименьшим (рис. 19).

Шириной реки в данном случае пренебрегаем.

Луч из источника света А отражает от экрана Е так, что отраженный луч проходит через точку В. Найти точку экрана, в которой отразился луч света.

Еще пример (первая задача – геометрическая, три последующие – практические):

Две точки А и В расположены по одну сторонупрямой МN. На этой прямой найти такую точ­ку С, чтобы

АСМ =
ВСN.

В какую точку нужно направить луч света из точки А, чтобы он, отразившись от непрозрачного экрана а, попал в точку В (рис 20)?

Рис. 19 Рис. 20

В какую точку нужно направить упругий шар А, чтобы он, отразившись от упругой стенки, прошел через точкуВ (рис. 20)?

К двум точкам А и В подвешена гибкая нерастяжимая нить, на которую надето тяжелое коль­цо. Найти положение равновесия кольца на нити.

Часто оказывается, что математическая задача весь­ма проста, но если вложить в нее практическое содержа­ние, то она становится недоступной. Поэтому полезно в VI–VIII классах рассматривать с учащимися примеры того, как различные практические задачи сводятся к одной и той же математической.

Большое образовательное значение имеет ознаком­ление учащихся с приборами, применяемыми на практи­ке при решении некоторых конструктивных задач. Обычно эта работа проводится после решении соответствующих задач на построение. Так, например, после рассмотрения свойства перпендикуляра, проведенного к хорде через ее середину, учащимся предлагается найти центр изображенной на чертеже окружности (возможный порядок решения задачи дан на рис. 21 и 22).

Рис. 21

Рис. 22

2.2.6. Этапы решения задачи на построение.

Анализ.

Анализ – это важный этап решения задачи, так как здесь мы составляем план построения, по существу, находим решение. Устанавливаются такие зависимости между данными и искомыми элементами, которые дают возможность построить искомую фигуру. При обучении решению задач па построение целесообразно подчерки­вать аналогию, существующую между отысканием ре­шения задач по арифметике, алгебре и геометрии ни вычисление и доказательство и анализом задач на по­строение. Ученик не должен считать, что для нахождения решений задач на построение нужны совершенно новые приемы. Поэтому следует помочь ученикам увидеть ана­логию в применяемых приемах для отыскания решении задач на построение и задач из других дисциплин.

При решении задач по алгебре на составление и ре­шение уравнений мы устанавливаем такие зависимости между искомыми и данными величинами. Вначале вни­мательно изучается условие задачи, рассматривается смысл той или иной данной величины. Для более трудных задач используем иллюстрации в виде чертежа или схемы. Предполагая задачу решенной, мы некоторую величину обозначаем буквой х (или другой буквой) и считаем ее известной. Устанавливаем зависимости между этой величиной и величинами, данными в условии задачи, причем из многообразия различных зависимостей выби­раем те, которые позволят решить задачу, в данном случае составить уравнение.

Сделаем подобный анализ задачи на по­строение: «Построить треугольник, зная основание,меньший угол при основании и разность двух других сторон».

Чтобы найти решение, нужно вначале изучить усло­вие задачи, посмотреть, какие элементы искомого тре­угольники даны. Для этого начертим произвольный тре­угольник А1В1С1(рис. 25) иотметим элементы, соответ­ствующие данным по усло­вию. Пусть это будет сторо­на А1С1и угол С1А1В1. Но на чертеже нет разности двух других сторон. А так как для решения задачи мы должны учесть все данные, то нуж­но показать и разность.

Рис. 25

Это можно сделать четырьмя способами: на меньшей стороне отложить большую от точки С1 или от точки В1либо на большей отложить меньшую и вновь отклады­вать как от точки В1, так и от точки А1. Если разность будет около точки В1, то тогда данные не связаны между собой и нельзя наметить план решения. Если же В1 А1отложим от точки В1на В1С1, то данные: основание, угол при основании и разность двух других сторон – будут связаны между собой, но и эта связь не дает возможно­сти наметить план решения, она недостаточно жестка, чтобы построить, восстановить фигуру Д2C1A1B1. Лучше всего ввести разность, откладывая B1D1 = B1C1, так как в этом случае мы уже сможем восстановить фигуру С1А1Д1. Конкретизировав таким образом данные задачи, приступаем к составлению плана решения.

Построив в произвольной прямой отрезок, равный основанию, получим две вершины треугольника: А1и С1. Зная угол С1А1В1, мы можем найти и положение точки D1, где D1А1 = В1А1 – В1С1. Остается рассмотреть, как построить точку В1 зная положение точки D1. Так как С1В1 = В1D1, то точка В1равноудалена от точек С1и D1, поэтому она должна лежать на перпендикуляре Р1Q1, проведенном к отрезку С1D1через его середину. Точка пересечения прямой Р1Q1и луча А1D1и будет точкой В1. Следовательно, приходим к следующему построению. На произвольной прямой откладываем отрезок, равный основанию, и строим угол, равный данному, одна из сторон которого содержит построенный отрезок, а вер­шина совпадает с концом этого отрезка. На второй сто­роне угла откладываем отрезок, равный разности двух других сторон треугольника, и строим геометрическое место точек, равноудаленных от соответствующих кон­цов основания и построенного отрезка. Точку пересече­ния этого геометрического места со стороной угла, содержащей разность, соединяем с концом основании и получаем искомый треугольник.

Из этого примера видно, что при отыскании реше­ния задачи на построение, как и для арифметических задач, применяется аналитико-синтетический метод. Сле­дуя от вопроса задачи, учитываем, какие элементы нам известны, и, наоборот, исходные данные комбинируем так, чтобы построить искомую фигуру. Название этапа анализ не означает, что для отыскания решения при­меняется только аналитический метод, подобно тому как и при доказательстве, которое иногда называют синтезом, не всегда применяется синтетический метод рассуждения. При разборе задачи, при отыскании путей ее решения анализ и синтез находятся в постоянном взаимодействии, дополняют и проверяют друг друга.

Анализ задачи связан с исходным чертежом, по­этому его необходимо выполнять аккуратно, а фигура должна иметь наиболее общую форму. Если речь идет о треугольнике, то нужно брать разносторонний тре­угольник; о трапеции, то не равнобочную трапецию; если о четырехугольнике вообще, то и чертим четырехуголь­ник, который не был бы ни параллелограммом, ни трапе­цией. Если, например, решая задачу на построение тре­угольника, выберем для анализа равносторонний тре­угольник, то учащиеся вместо нужных зависимостей между данными и искомыми элементами могут исполь­зовать и другие связи, которые возникнут у них под впе­чатлением равносторонности треугольника.

Чертеж необходимо выполнять аккуратно чертежны­ми инструментами, и лишь после приобретения навыков в вычерчивании отрезков без линейки можно выполнять его от руки. Навыки выполнения чертежей или рисунков от руки особенно необходимы для учащихся, которые в будущем будут иметь дело с техникой, где они должны уметь делать эскизы деталей. С этим они не смогут спра­виться, не имея простейших навыков технического рисо­вания и черчения.

Чертеж должен строго соответствовать условию зада­чи. В ряде случаев целесообразно при анализе построе­ние чертежа начинать не с данных, а с искомых элемен­тов фигуры. Если, например, искомая окружность по условию касается некоторой прямой и некоторой окруж­ности в данной на ней точке, то и на чертеже для анализа мы должны видеть их касающимися. Следовательно, вначале надо построить окружность, изображающую искомую, и пристроить касающиеся ее произвольные прямую и окружность.

Таким образом, для отыскания решения задач на построение первое время необходимо использовать на­выки, приобретенные учащимися при решении арифме­тических задач, а затем уже и навыки, приобретенные при решении основных задач на построение и других математических задач. Используем также теоретический материал, в том числе и специальные методы геометри­ческих построений.

Построение.

1. Второй этап решения задач на построение состоит из двух частей: 1) перечисление в определенном порядке всех элементарных построений, которые нужно выпол­нить, согласно анализу, для решения задачи; 2)непо­средственное выполнение этих построений на чертеже при помощи чертежных инструментов. Действительно, решить задачу с помощью тех или иных инструментов – значит указать конечную совокупность элементарных, допустимых для данных инструментов, построений, вы­полнение которых в определенной последовательности позволяет дать ответ на вопрос задачи. Например, до­пустимыми построениями, которые определяют понятие «с помощью циркуля и линейки», являются следующие: 1) построение прямой, проходящей через две данные точки; 2)построение точки пересечения двух данных прямых; 3) построение окружности данного радиуса при заданном центре; 4) построение точек пересечения двух данных окружностей; 5) построение точек пересечении данной прямой и данной окружности.