Смекни!
smekni.com

Развитие логического мышления учащихся при решении задач на построение (стр. 19 из 28)

Уже при решении простейших задач мы встречаемся с такими случаями, когда последовательность элемен­тарных построений, нужных для построения искомой фигуры, указана, а практически осуществить их нельзя. Например, требуется построить треугольник по трем сторонам. Всегда можно указать последовательность построений для решения этой задачи, но если одна из сторон больше суммы двух других, то треугольника не получим. И в стереометрии при решении конструктивных задач мы не всегда можем, например, выполнить постро­ение плоскости или сферы так, как мы строим на пло­скости прямые и окружности. И тогда главным является уже не фактическое построение, а указание, в какой последовательности нужно выполнять определенные построения, чтобы решить задачу. Например: «Через дан­ную точку А провести прямую, параллельную данной прямой МN, не. проходящей через точку А». Для этого через точку А и прямую МNпроводим плоскость и в ней через точку А проводим прямую, параллельную прямой МN. Задача считается решенной, хоти эти построения мы выполнить не можем.

2.Перечисление элементарных построений в разделе «Построение» не всегда является повторением анализа. При анализе мы находим лишь план решения (как и при решении арифметических задач), а потом уже осущест­вляем его, записывая в форме вопросов с выполненными соответствующими действиями; недостаточно лишь уста­новить, как мы будем решать задачу, а нужно привести и само решение.

И при решении конструктивных задач, наметив план построении, нужно еще указать, как оно выполняется, так как нередко одно и то же построение, указанное в ана­лизе, можно осуществить различными способами.

Решение одной и той же задачи несколькими спосо­бами усиливает интерес учащихся к задачам на построе­ние и сознательное отношение к решению таких задач. Если решать задачи на построение все время по заранее указанным методам, то этим самым сковывается изобретательность и инициатива учащихся в нахождении раз­личных и оригинальных способов решения и им трудно научиться самостоятельно решать конструктивные за­дачи. Они применяют в первую очередь знания изучае­мого материала и навыки, полученные при решении задач, предшествующих данной. Если решались задачи, требующие применения определенного метода, то и для предложенной задачи они изобретут тот же знакомый им путь решения, даже если он нерационален. Указание учителя на существование более простого способа не дает должного эффекта, так как предложенное учителем ре­шение кажется учащимся искусственным, которого они сами не смогли бы найти.

Конечно, если это делать до того как ученики при­обретут прочные навыки в отыскании решений различ­ными способами, то результаты окажутся отрицатель­ными. Внимание учащихся каждый раз будет распылять­ся между всеми способами, и они ни одного из них не усвоят основательно, чтобы применять его достаточно сознательно.

Различными способами хорошо решать задачи в конце учебного года, при повторении курса геометрии, когда учащиеся уже имеют достаточные навыки в решении задач на построение. Задачу, допускающую различные способы решения, лучше задавать на дом, чтобы они не только решили, но и нашли наиболее простое решение.

Сам учитель должен выбирать тот способ решения, который является наилучшим и с теоретической и с мето­дической точек зрения. Нельзя руководствоваться только простотой построения, понятием геометрографии. Следует учитывать не только трудность выполнения построе­ния, но и трудности анализа, доказательства и исследо­вания.

3. Из приведенных примеров видно, что решение не всегда сводится к элементарным построениям, а чаще всего к так называемым основным построениям или основным задачам на построение. Подобно тому, как при доказательстве теорем используются и результаты ранее изученных теорем, а не только аксиом, так и при решении задач на построение при анализе и описании построения используются ранее решенные задачи. Задачи, решение которых в дальнейшем часто используется, обычно отно­сят к основным задачам на построение. Список основных задач на построение определяется учебником, но надо помнить, что задача на построение может или не может быть отнесена к основным и в зависимости от степени подготовки учащихся.

В средней школе нецелесообразно при решении каждой задачи требовать от учащихся в письменной или устной форме подробного описания построений. Такое описание, особенно в VI-VII классах, требует большой затраты времени. Интерес учащихся к решению задач на построение понижается, ибо главной трудностью стано­вится изложение решения, сводящееся иногда к целым «сочинениям».

Если анализ задачи выполнен достаточно подробно, то и при устном пояснении к решению, и в письменных работах достаточно, если ученик указывает, например: «Строим прямоугольный треугольник по гипотенузе и ка­тету», – и верно выполняет это построение. Учитель все­гда в состоянии проверить, правильно ли выполнил ученик построение, если даже описание и отсутствует. Нередко, разобрав с учащимися условие задачи и на­метив план построения, предлагаем учащимся выполнить это построение в тетрадях, не требуя каких-либо поясне­ний в письменной форме.

Важна и цель, для достижения которой решается та или иная задача на построение. Если на данном уроке, например, главная цель решения задач – обучение отыс­канию решений, то мы стремимся научить учащихся анализировать условие задачи, уметь видеть на чертеже нужные фигуры и имеющиеся отношения между фигура­ми и их элементами. В таком случае незачем усложнять работу требованием подробного описания построения. Все внимание учащихся должно быть сосредоточено на главном, и не нужно распылять его на второстепенные вопросы, не имеющие прямого отношения к поставленной цели.

Если на первых порах решения задач на построение мы всегда требуем непосредственного выполнения по­строения инструментами, то нередко, когда убеждены, что все учащиеся класса сумеют выполнить чертеж с по­мощью инструментов, разрешаем учащимся указывать лишь план построении, выполняя чертеж от руки, а ино­гда просто ограничиваемся лишь составлением плана построения, то есть анализом, или с проведением еще исследования.

4. С введением геометрического материала в курс арифметики учащиеся уже в V классе приобретают навыки в применении таких инструментов, как линейка, циркуль, чертежный треугольник, знакомятся с устройством и применением транспортира. При вычерчивании секторных диаграмм, а также на уроках географии они закрепляют свои знания об устройстве транспортира и приобретают навыки в применении его для измерения углов и для построения заданных углов. На уроках труда вшкольных мастерских пятиклассники при разметке при­меняют линейку, циркуль, угольник. Эти навыки закреп­ляются в VI классе при изучении первой темы курса геометрии «Основные понятия».

При изучении свойств прямой учащиеся выполняют построения всевозможных прямых через одну, две, три, четыре точки. Выполняя необходимые построения, они убеждаются, что через одну точку можно провести сколь­ко угодно прямых, через две – только одну, через три точки можно провести три прямые или только одну, четы­ре точки могут определять только одну прямую, или четыре прямые, или шесть прямых. Это содействует раз­витию пространственных представлений.

Учащиеся должны приобрести прочные навыки в вы­полнении действий над отрезками и в выполнении нало­жения одного отрезка на другой, что существенно важно для дальнейшей работы. Здесь они закрепляют навыки в применении линейки и циркуля, так как часто нужно уметь «взять» отрезок циркулем, отложить его на произ­вольной прямой, сравнить отрезки путем наложения одного на другой. Применение транспортира, причем не только в качестве малки, но и для измерения углов, облегчает усвоение раздела «Сравнение углов. Действия над углами: сложение, вычитание, умножение на целое число. Биссектриса угла».

Доказательство.

1. После того как фигура построена, необходимо установить, удовлетворяет ли она условиям задачи, то есть показать, что фигура, полученная из данных элемен­тов определенным построением, удовлетворяет всем усло­виям задачи. Значит, доказательство существенно за­висит от способа построения. Одну и ту же задачу можно решать различными способами, в зависимости от наме­ченного при анализе пла­на построения, а поэтому,и доказательство в каж­дом случае будет свое, Рассмотрим задачу: «По­строить трапецию по четы­рем сторонам» (рис. 26).

Рис. 26

Проведя СК||ВА, решение задачи сводим к построению треугольника КСD по трем сторонам: две равны боковым сторонам трапеции (АК = КС), а КD = АD – ВС. Построим треугольник КСD, и, считая сторону АD построенной, допол­ним его до трапеции различными способами:

1) Проведем ВС||АDи, отложив меньшее основание, соединим полученную точку В с А Доказательство све­дется к установлению равенства: АВ = КС.