Смекни!
smekni.com

Развитие логического мышления учащихся при решении задач на построение (стр. 21 из 28)

Заметим, что и при решении задач на доказательст­во или вычисление учащимся нередко нужно для по­строения правильного чертежа также проводить иссле­дование. Часто необходимо предварительно выяснить, какой вид данного треугольника (остроугольный или ту­поугольный), какие стороны принять равными даннымотрезкам. Например, при решении задачи: «Определить периметр равнобедренного треугольника со сторонами в 7 см и 3 см»вначале нужно установить, что основанием является отрезок длиной 3 см,а не 7 см.

Нередко уже при анализе задач на построение мы вынуждены учитывать различные положения данных и искомых элементов. Например, решая задачу: «Дана окружность и на ней три точки М, N и Р, в которых пере­секаются с окружностью (при продолжении) высота, биссектриса и медиана, исходящие из одной вершины вписанного треугольника. Построить этот треугольник», в первую очередь нужно выяснить, что точка N (соответ­ствует биссектрисе) расположена между М и Р, рассмат­ривая дугу MP, меньшую полуокружности.

Приведем еще такой пример: «На окружности даны две точки А и В. Из этих точек провести две параллель­ные хорды, сумма которых дана». Решение задачи легко свести к построению вписанной трапеции с заданной сум­мой оснований, вершинами которой являются точки А и В. Но решение зависит от того, будет ли АВ боковой сто­роной трапеции или ее диагональю. Вновь анализ вклю­чает в себя элементы исследования.

Несмотря на необходимость и целесообразность исследования при решении задач на построение, ему и в школе, и в методической литературе уделяется недоста­точно внимания. Большое внимание уделяется обычно отысканию решения – анализу. Анализ – основной этап при решении задач на построение: не найдя реше­ния, нельзя провести ни построения, ни доказательства, ни исследования. Но по трудности выполнения исследование является не менее сложным этапом. Наи­большее количество ошибок допускается именно при исследовании.

2.2.7. Методы решения задач на построение.

Метод геометрических мест.

1. Понятие «геометрическое место точек», являющее­ся синонимом понятия «множество», одного из основных понятий современной математики, вводится в элементар­ной геометрии исключительно ввиду его наглядности, образности; слово «место» как бы отвечает на вопрос, где «помещаются» точки, обладающие тем или иным свойством.

Знание геометрических мест точек, обладающих определенным свойством, облегчает нахождение реше­ния для многих практических задач. Например, для ре­шения задач на сопряжение окружностей и прямых, с ко­торыми учащиеся встречаются довольно часто на уро­ках труда в школьных мастерских при опиливании криволинейных поверхностей (изготовление дуги для лобзика, отвертки, гаечного ключа и т. п.), при изготов­лении приборов, пособий для школы, которые они часто делают не по чертежам, а по техническим рисункам, не выполняя деталировки каждой детали, необходимо знать соответствующие геометрические места. Без знания геометрических мест центров окружностей, касающихся данных прямых или окружностей при определенных ограничениях, семиклассники не смогут на уроках чер­чения понять способы решения задач на сопряжение углов дугами, сопряжение окружности с прямой при помощи дуги данного радиуса и т.п.

Следует учитывать, что понятие «геометрическое ме­сто точек» необходимо и в курсе алгебры при изучении графиков простейших функций в VII-VIII классах. График функцииопределяется как геометрическое место точек плоскости, координаты которых являются соответственными значениями аргумента и функции. Понятие графика необходимо и в курсе физики, где в последние годы все большее значение приобретает графический метод.

В VI-VII классах нельзя отказываться и от решения задач на построение методом геометрических мест, од­ним из основных методов конструктивной геометрии.

Решая задачи на построение, учащиеся учатся при­менять свои знания, ибо они должны сами отвечать на поставленные вопросы. В настоящее время главной задачей учителей математики является не столько сообще­ние математических фактов, определений, формул, тео­рем, сколько необходимость учить детей мыслить, учить их самостоятельно работать.

2. Учащиеся VI класса не сразу сознательно, глубоко усвоят понятие «геометрическое место точек». Важно, чтобы они с данными словами связывали более полную группу геометрических фигур, чтобы понятие охваты­вало целый класс, а не один – два отдельных примера. Учащиеся должны видеть различные примеры геометри­ческих мест точек в различных формулировках, чтобы на основе анализа и синтеза осознать общность этого понятия, охватывающего обширный класс геометриче­ских фигур, создать себе соответствующее представление об этом понятии.

Трудным для понимания шестиклассников является и абстрактное понятие «множество». Приводимые при­меры множеств (множество учащихся, деревьев в саду и т.п.), в большинстве своем, есть конечные множества, а почти все геометрические места точек, рассматривае­мые в школьном курсе геометрии, являются бесконечны­ми точечными множествами.

3. Понятие геометрического места точек, обладаю­щих некоторым свойством, вводим на примере геометрического места точек, равноудаленных от двух данных точек. После изучения признаков равенства прямоуголь­ных треугольников решаем задачу: «Найти точку, рав­ноудаленную от двух данных точек А и В» (рис. 27).

Рис. 27

Учащиеся обычно указывают лишь точку О, середину отрезка АВ. А нет ли на плоскости еще точек, равноуда­ленных от А и В? При построе­нии с помощью циркуля не- скольких таких точек учащиеся самостоятельно припоминают свойство точек оси симметрии и говорят, что точек, равноудаленных от А и В, будет много, все они лежат на оси симмет­рии данных точек А и В.

Можно непосредственно, основываясь на признаках ра­венства прямоугольных тре­угольников, доказать, что всякая точка, равноудаленная от данных точек А и В, лежит на их оси симметрии, то есть на перпендикуляре, проведенном к отрезку АВ через его середину, и наоборот, всякая точка этого перпендику­ляра равноудалена от точек А и В.

После этого даем определение геометрического места точек, обладающих некоторым свойством, как множест­ва всех точек, обладающих этим свойством, и только та­ких точек, и предлагаем учащимся сформулировать ре­зультат решения задачи и записать в тетради, что гео­метрическое место точек, равноудаленных от двух точек, есть ось симметрии данных точек.

Здесь впервые встречаемся не с отдельной, фиксиро­ванной точкой, а с любой точкой прямой. До этого уча­щиеся почти всегда имели дело с неподвижными, опре­деленными по положению точками, а здесь точка может перемещаться некоторым образом, но все время она об­ладает определенным свойством. Поэтому большую пользу окажет учащимся наглядное пособие с непо­движными точками А и В и перемещающейся по их оси симметрии точкой О, соединенной резинкой с точками А и В, с помощью которого хорошо разъяснить смысл выражения: «Любая точка оси симметрии равноудалена от А и В».

Примечание. Включение в определение лишних с научной точки зрения слов «и только таких точек» вызвано педагогическими соображениями. В противном случае в определении явно не выделяется необходимость доказательства двух взаимно обратных теорем для утверждения, что та или иная фигура является геометрическим местом точек, обладающих определенным свойством.

4. Целесообразно в качестве домашнего задания к этому уроку предложить учащимся повторить определе­ние окружности (§ 12 по учебнику Н. Н. Никитина). То­гда на уроке, уточнив, что все точки окружности нахо­дятся от центра на одном и том же расстоянии, а всякая точка, взятая внутри (вне) окружности, находится от ее центра на расстоянии, меньшем (большем) радиуса, делаем вывод, что окружность можно рассматривать как геометрическое место точек плоскости, находящихся на данном расстоянии Rот данной точки О.

Предлагаем учащимся самостоятельно найти все точки, находящиеся от данной точки О на расстоянии, меньшем чем R. И при разборе этого задания подчерки­ваем, что геометрическим местом точек может быть пря­мая, окружность и даже круг, а в дальнейшем будет показано, что геометрическим местом точек, обладаю­щих некоторым свойством, может быть луч, отрезок прямой, две прямые или две окружности и даже отдельные точки. Разбирая такие конкретные примеры, мы пока­зываем учащимся разнообразие видов тех множеств то­чек, которые могут быть геометрическими местами точек.

Затем надо показать учащимся, что одно и то же гео­метрическое место точек может встречаться в различ­ных формулировках, для чего сравниваем, например, из­вестное им геометрическое место точек, равноудаленных от двух данных точек, с такими, как геометрическое место точек, равноудаленных от концов дачного отрезка; геометрическое место вершин равнобедренных треуголь­ников с общим основанием (середина основания уже исключается).

5. Применяя эти геометрические места точек, решаем задачи методом геометрических мест, начиная с простей­шей задачи. Какие же задачи считать простейшими?

Сущность метода геометрических мест состоит в сле­дующем:

1) Решение задачи сводим к отысканию точки, удо­влетворяющей определенным условиям.

2) Отбрасываем одно из этих условий, получим гео­метрическое место точек, удовлетворяющих оставшимся условиям.

3) Отбрасываем затем какое-нибудь другое условие, получим новое геометрическое место точек, удовлетворяющих остальным условиям.