Смогоржевский, А.С. Линейка в геометрических построениях, 1957.
Степанов, В.Д. Актуальные вопросы обучения геометрии в средней школе: Межвуз. сб. науч. тр / Владимир. гос. пед. ин-т им. П.И. Лебедева-Полянского; [ред. кол.: В.Д. Степанова (отв. ред.) и др.] – Владимир: ВГПИ, 1989 – 94 с., ил.
Столяр, А.А. Методика преподавания математики в средней школе: Общая методика / Учеб. пособие по спец. «Математика» и «Физика»; сост. А.А. Столяр, Р.С. Черкасов. – М.: просвещение, 1985 – 336 с.
Тесленко, И.Ф. О преподавании геометрии в средней школе: (По учеб. пособию А.В. Погорелова «Геометрия 6-10») Кн. для учителя. – М.: Просвещение, 1985 – 95 с., ил.
Фетисов, А.И. Методика преподавания геометрии в старших классах средней школы / под ред. А.И. Фетисова: пособие для учителя – М.: Просвещение, 1967 – 272 с.
Фурман, А.В. влияние особенностей проблемной ситуации на развитие мышления учащихся. // Вопросы психологии, 1985 – №2 – с. 68-72.
Четверухин, Н.Ф. Изображение фигур в курсе геометрии: пособие для учителей и студентов – М.: УЧПЕД ГИЗ, 1958.
Четверухин, Н.Ф. Методы геометрических построений, 1952.
Чистякова, Г.Д. Мышление: его закономерности и условия развития. // Биология в школе – 1989 – №5 – с. 18-21.
Чистякова, Г.Д. Учить думать: [О развитии мышления школьников] // Биология в школе – 1989 – №6 – с. 23-26.
Шерпаев, Н.В. Графическая система для геометрических построений. // Математика в школе. – 1988 – №5 – с. 44-48.
Якиманская, И.С. Знания и мышление школьника. – М.: Знание, 1985 – 80 с.
Якиманская, И.С. Психологические основы математического образования: учеб. пособие для студ. вузов – М.: Академия, 2004 – 319 с.
ТЕМА 1. ЧТО ТАКОЕ ЗАДАЧИ НА ПОСТРОЕНИЕ.
ПОСТРОЕНИЕ ТРЕУГОЛЬНИКА С ДАННЫМИ СТОРОНАМИ (1 Ч)
Комментарий для учителя
В результате изучения пунктов учащиеся должны:
знать алгоритм решения задачи па построение треугольника по трем сторонам;
уметь его применять при решении конкретных задач с числовыми или геометрически заданными условиями.
Методические рекомендация к изучению материала
Учащиеся уже знакомы из курса математики VI класса с решением задачи на построение треугольника по трем сторонам. Поэтому изучение нового материала можно начать с решения задачи 17 (1):
«Постройте треугольник с данными сторонами а = 2 см, b= 3см, с =4 см».
Построенный треугольник обозначить ΔАВС, обратив внимание учащихся на традиционное соответствие обозначений, – сторона а лежит против угла А, b–против
В, с – против С.Затем можно показать учащимся, что стороны треугольника могут быть заданы геометрически – данными отрезками а, b, с (рис. 1), и разобрать с ними общий алгоритм решения задачи.
Рис. 1
Следует обратить также внимание учащихся, что последняя фраза в решении: «Треугольник АВС имеет стороны, равные а, b, с – есть не что иное, как доказательство того, что построен именно искомый треугольник. После этого можно предложить учащимся решить задачу:
«Постройте равносторонний треугольник по его стороне».
Примерное планирование изучения материала
В классе – провести краткую беседу о том, что такое задачи на построение, разобрать решение задачи 5.1. решить задачи 17 (1), 19; дома – вопрос 10, задачи 17 (2), 18.
Указания к задачам
К пункту относятся задачи 16 – 20.
19. Задачу рекомендуется решить в классе. Если она будет задана на дом, то следует дать указание: решение начать с построения окружности.
Рис. 2
Дано: а, b, R.
Решение. Проведем окружность данного радиуса (рис. 2). Выберем на окружности точку С и из этой точки как из центра сделаем две засечки радиусами а и b. Получим точки А и В. Δ АВС искомый. У него данные попоны ВС = а, АС = b. Описанная окружность имеет радиус R.
Для того чтобы задача имела решение, стороны а и bдолжны быть меньше диаметра окружности (a<2R, b<2R).
20. Дано: R, точки А, В.
Решение. Проведем две окружности радиуса Rс центрами в точках А и В. Точки пересечения этих окружностей являются центрами искомой окружности.
Исследование. Если АВ > 2R, то задача не имеет решения.
Если АВ = 2R, то задача имеет одно решение: центр окружности – середина отрезка АВ.
Если АВ<2R, то задача имеет два решении: обе точки пересечения проведенных окружностей служат центрами искомых окружностей.
На примере этой задачи учащимся можно дать представление об этапе исследования, о различном числе решений задач на построение. Для этого целесообразно решить задачу 20 в классе, заготовив на доске три исходных рисунка: отрезок, равный R, и точки А и В, причем: 1) АВ<2R; 2) АВ = 2R; 3) АВ > 2R. Решение у доски одновременно проводится силами трех учащихся.
Примечание. Задачу можно предложить учащимся также после изучения теоремы 5.6, решив се с помощью метода геометрических мест.
ТЕМА 2. ПОСТРОЕНИЕ УГЛА, РАВНОГО ДАННОМУ (1 ч)
Комментарий для учителя
В результате изучения пункта учащиеся должны:
знать алгоритм задачи на построение угла, равного данному;
уметь применять алгоритм при решении задачи на построениетреугольников по двум сторонам и углу между ними, по стороне идвум углам и т. п.
Методические рекомендации к изучению материала
Начать изучение нового материала можно с решения задачи на построение треугольника типа 21 (1, а):
«Постройте треугольник АВС по двум сторонам и углу между ними: АВ = 5 см, АС = 6 см,
А = 400».Решение этой задачи знакомо учащимся из курса математики VI класса.
Затем можно предложить учащимся решить ту же задачу, однако данные задать геометрически:
«Постройте треугольник АВС по двум сторонам с, bи углу между ними
» (рис. 3).Рис. 3
Для того чтобы решить эту задачу, нам надо построить угол А, равный данному углу
.Далее учащимся излагается алгоритм решения задачи 5 (2).
После этого можно предложить учащимся решить задачу:
«Постройте равнобедренный треугольник по основанию и углу, прилежащему к основанию».
Примерное планирование изучения материала
В классе – разобрать решения задач 5 (2), 21 (1 а; 2 б), 22 (2); дома – вопрос 11. задачи 22 (1). 23.
Указания к задачам
К пункту относятся задачи 21–23.
ТЕМА 3. ПОСТРОЕНИЕ БИССЕКТРИСЫ УГЛА.
ДЕЛЕНИЕ ОТРЕЗКА ПОПОЛАМ (1 ч)
Комментарий для учителя
В результате изучения пунктов учащиеся должны:
знать алгоритмы решения задач на деление угла и отрезка пополам;
уметь решать несложные задачи па построение с использованием этих алгоритмов.
Методические рекомендации к изучению материала
1°. При изложении учащимся решения задачи 5.3 (построение биссектрисы угла) можно более подробно остановиться на доказательстве того факта, что в результате построения действительно получились равные утлы.
В самом деле, Δ АВD = ΔАСD по третьему признаку равенства треугольников. Из их равенства следует, что
DAB = DAC (рис. 4).Рис. 4 Рис. 5
2о. При решении задачи на деление отрезка пополам (задача 5.4) отрезки АС, ВС, АС1и ВС1строятся равными отрезку АВ (рис. 5). При доказательстве этот факт не учитывается. Действительно, равенство треугольников САС1и СВС1по третьему признаку можно доказать и без этого. Можно доказать, что точка О – середина отрезка АВ и с учетом конкретного построения, данного в учебном пособии. Приведем это доказательство. По построению АС = СВ = АС1 = С1В = АВ, т. е. ΔАСВ и ΔАС1В равносторонние; следовательно,
САВ = С1АВ = 60°, а САС1 = 120о. ΔАСС1 равнобедренный, АСС1 = АС1С = (1800 – 1200):2 = 300, ВСО = АСВ – АСС1 = 600 – 300 = АСС1, т. е. СО – биссектриса угла С в равнобедренном треугольнике АВС: следовательно, она медиана: ВО = АО.