Смекни!
smekni.com

Развитие логического мышления учащихся при решении задач на построение (стр. 8 из 28)

Поэтому в процессе обучения математике следует всячески по­ощрять у учащихся желание и способность к догадке. При этом сле­дует каждый раз обращать внимание учащихся на то, что каждая гипотеза, выдвинутая при помощи догадки, нуждается в проверке направдоподобность и в обосновании (если она не будет опровергнуты каким-либо примером).

Интуитивное мышление нередко проявляется в процессе умозаключений по аналогии.

Так, например, пусть нам известно, что центр тяжести одно­родного треугольника совпадает с центром тяжести трех его вер­шин (т. е. трех материальных точек одинаковой массы, помещенных в трех вершинах треугольника).

Зная это, мы можем предположить, что центр тяжести одно­родного тетраэдра совпадает с центром тяжести его четырех вершин. Такая догадка представляет собой «догадку по аналогии». Зная, что треугольник и тетраэдр похожи друг на друга во многих отно­шениях, мы и высказываем эту догадку. Предоставляем читателю самостоятельно проверить, насколько верна высказанная только что догадка.

Функциональное мышление, характеризу­емое осознанием динамики общих и частных соотношений между математическими объектами или их свойствами (и умением это использовать), ярко проявляется в связи с изучением одной из ведущих идей школьного курса математики – идеи функции.

Как известно, одним из центральных требований начальной стадии международного движения за реформу математического обра­зования (возглавлявшегося Ф. Клейном) было требование обращать особое внимание на развитие у школьников функционального мыш­ления, наиболее характерными чертами, которого являются:

а) представление математических объектов в движении, изме­нении;

б) операционно-действенный подход к математическим фактам, оперирование причинно-следственными связями;

в) склонность к содержательным интерпретациям математичес­ких фактов, повышенное внимание к прикладным аспектам мате­матики.

Как показывают исследования, наглядно кинематические и физические представления, лежащие в основе функционального мышления, органически сливаются с формально-логическими ком­понентами мышления.

Одним из средств развития функционального мышления могут служить системы задач на математическое выражение и исследова­ние конкретных ситуаций с ярко выраженным «функциональным Содержанием».

В общем случае решение такой задачи содержит в себе три мо­мента:

1. В изучаемом явлении выделяют основные, существенные связи, отбрасывая второстепенные, несущественные детали, вводят различного рода упрощения и допущения.

2. Связав объекты, выступающие в изучаемом явлении, с чис­лами или геометрическими образами, переходят от зависимостей между этими объектами к математическим соотношениям – фор­мулам, таблицам, графикам.

3. Полученные математические соотношения исследуют, поль­зуясь уже известными, выработанными и изученными математическими правилами действий над ними, а результаты исследования истолковывают в терминах и понятиях изучаемого явления.

К сожалению, на практике из-за недостатка времени нередко приходится ограничиваться неполными задачами, содержащими только некоторые из перечисленных выше элементов. Какими именно, зависит от возраста учащихся и преследуемых учителем целей.

Нетрудно обнаружить, что разновидности математического мышления являются не чем иным, как специфическими формами - проявления диалектического мышления в процессе изучения мате­матики. Можно, например, указать на тот факт, что так называемое функциональное мышление является адекватным осознанию из­менчивости, взаимосвязи и взаимозависимости математических понятий и соотношений, что характерно для диалектического мышления.

Известно также, что наряду с задачей развития логического мыш­ления, составляющей одну из задач обучения математике, в школьном обучении должна решаться не менее важная, хотя и более общая задача – задача воспитания логической гра­мотности. Содержание понятия «логическая грамотность» доставляют такие логические знания и умения, которые дают воз­можность для успешного обучения в школе, для дальнейшего обучения и самообразования, для успешной общественно полезной практической деятельности и повседневной жизни. Исследования Л. Никольской показали, что от выпускников средней школы требуется овладение следующими логическими знаниями и уме­ниями: умения определять известные понятия, классифици­ровать, понимать смысл основных логических связок, распозна­вать логическую форму математических предложений, доказывать утверждения и обнаруживать логические ошибки, организовывать свою деятельность в соответствии с внутренней логикой ситуации, мыслить критически, последовательно, четко и полно, владеть основными мыслительными приемами. Нетрудно обнаружить, что в понятие логической грамотности вкладываются не только со­ответствующие знания и умения, но и сформированность многих качеств научного мышления. Поэтому задача воспитания логической грамотности правомерно рассматривается как важный элемент общей культуры мышления.

Развитие же логического мышления учащихся в процессе обучения математике есть, прежде всего, развитие тео­ретического мышления, которое представляет собой один из важнейших аспектов развития диалектического мышления. В самом деле, не только в ходе обучения и развития, но и в ходе воспитания, и в особенности в процессе формирования диалектико-материалистического мировоззрения школьников, предполагается целенаправленная работа учителя по развитию логического мышле­ния, основанная на самом содержании учебного материала и его методологии. Конечным итогом обучения любому предмету (в том числе и математике) должно быть подведение учащихся к наиболее общим философским выводам о видах и формах существования ма­терии. При этом важно, чтобы эти выводы и обобщения были сде­ланы самими учащимися в процессе размышления над логикой тех или иных посылок и следствий, в процессе изучения конкретного учебного предмета, под руководством учителя.

Таким образом, с научной точки зрения говорить о вышеуказан­ных типах мышления как о компонентах, присущих только мате­матическому мышлению, было бы неверно.

Вместе с тем с дидактических позиций выделение этих компонен­тов математического мышления возможно и даже целесообразно, т. е. целенаправленная работа учителя по формированию у школь­ников функционального, логического, интуитивного и т. д. мышле­ния реализует задачу математического развития учащихся в целом.

Использование условной терминологии дает возможность ориен­тировать учителя на ту или иную сторону развития математиче­ского мышления у школьников в соответствующих методических рекомендациях. Так, обратимся еще раз, к примеру, упомянутому ранее. Говоря о необходимости развития у учащихся абстрактно­го мышления, можно рекомендовать учителю, приступающему к преподаванию систематического курса геометрии, начать с рас­смотрения реальной ситуации – задачи проведения трубопровода между двумя пунктами. Сам трубопровод представляет собой ре­альный объект, обладающий самыми различными, важными в практическом смысле свойствами: весом отдельных звеньев, ка­чеством металла, размерами, формой, протяженностью, качеством покрытия, пропускной способностью и т. д.

Начиная проектировать строительство трубопровода, инженер-конструктор, прежде всего, будет интересоваться протяженностью и трассой, по которой он будет проложен. На этом уровне конструктор отвлекается от всех других свойств этого объекта, обращая вни­мание лишь на названные выше свойства; возникает абстракт­ная модель трубопровода в виде геометрической линии. Руководствуясь оптимальными условиями эффективной работы трубопровода, инженер начинает изучать вопрос о необхо­димой для этого форме и размерах трубопровода, не интересуясь теперь тем, по какой трассе он будет проложен. Возникает новая абстрактная модель этого же объекта, представленная в виде геометрического тела. Прораб, который руководит обкладкой трубопровода изоляционным материалом (или окраской трубопровода, защищающей его от коррозии), имеет дело уже с другой абстрактной моделью трубопровода: он рассматривает его как геометрическую поверхность. Решение этой и других аналогичных ей задач устанавливает полезность рассмотрения среди многообразных свойств объекта таких свойств, как размеры, форма и положение в пространстве. Возникает целая отрасль научного знания об объек­тах реальной действительности, в которой изучаются именно эти свойства реальных объектов, называемая геометрией.

Таким образом, тезис В. И. Ленина о том, что «диалектика вещей создает диалектику идей...», имеет отношение, но только к анализу природы абстракции, но и к методам обучения математике. Говоря о том, что в процессе обучения математике необходимо развивать абстрактное мышление школьников, мы, в частности, имеем в виду широкое использование методических приемов, аналогичных вышеприведенному.

В состав математического мышления включаются мыслит ильные умения, адекватные известным методам научного познания. В практике обучения математике отвыступают не столько как методы математической деятельно­сти, сколько как комплекс средств, необходимых для усвоения учащимися математики и развития у них качеств, присущих ма­тематическому мышлению. Эти мыслительные умения могут проявиться (и формироваться) в обучении на уровнях эмпириче­ского и научно-теоретического мышления.

Наряду со спецификой математического мышления справедливо P3Дичать специфику физического, технического, гуманитарного и других видов мышления. Именно в силу этой специфики в про­цессе познания конкретных наук (и обучения конкретным учебным предметам) активизируется развитие того или иного компонента мышления вообще, усиливается роль того или иного приема мы­слительной деятельности, того или иного метода познания.