Смекни!
smekni.com

Развитие математических способностей учащихся в процессе внеклассной работы по математике в начальной школе (стр. 14 из 23)

Можно провести с детьми «Конкурс смекалистых». Для этого ученики разбиваются на несколько команд по 3-6 человек в каждой. За самый быстрый правильный ответ команда получает очко, это может быть вырезанная из бумаги звездочка, солнышко, смешная рожица или же что-то еще. Во втором туре среди участников победившей команды выявляется самый смекалистый, им станет тот, кто ответит на большее число вопросов второго тура. Примерные вопросы:

1 тур.

Какие часы показывают верное время только 2 раза в сутки?

Когда мы смотрим на 3, а говорим «15»?

Сколько минут нужно варить яйцо, сваренное вкрутую?

Сидели две дочери, две матери да бабушка с внучкой. Сколько всех?

Шел Кондрат

В Ленинград,

А навстречу ¾ двенадцать ребят.

У каждого по три лукошка,

В каждом лукошке ¾ кошка,

У каждой кошки ¾ двенадцать котят.

У каждого котенка

В зубах по четыре мышонка.

И задумался старый Кондрат:

«Сколько мышат и котят

Ребята несут в Ленинград?»

В каком месяце 28 дней?

Яйцо должно вариться 4 минуты. Сколько минут будут вариться 3 яйца?

Петя за полчаса поймал 5 рыбок. Сколько рыбок он поймает за 1 час?

Два мальчика ¾ Петя и Ваня, отправились в лавочку. По дороге они нашли 10 рублей. Сколько денег нашел бы Петя, если бы пошел в лавку один?

В комнате 4 угла. В каждом углу сидит кошка. Против каждой кошки сидят по 3 кошки. Сколько всего кошек?

2 тур.

Если перевернуть цифру сверху вниз, она уменьшается на 3. Какая это цифра?

В известной сказке «Поди туда ¾ не знаю куда, принеси то ¾ не знаю что» царь послал стрелка Андрея за «тридевять земель». Тридевять ¾ это сколько?

Длина бревна 5 аршин. В одну минуту от этого бревна отпиливают по одному аршину. Во сколько минут будет распилено это бревно?

Продолжи числовой ряд: 1, 4, 5, 9, 14, …

Но и такие занятия требуют соблюдения определенных требований.

1.На занятиях необходимо осуществлять дифференцированный подход.

2. Оформление помещения должно быть увлекательным и ярким, так же как и демонстрационный материал.

3. Большое место в системе занятий отводить числовым загадкам, задачам в стихах, задачам-шуткам и драматизации задач.

4. Длительность занятий определяется их целевой установкой. Лучше проводить такие занятия чаще, но меньшей продолжительности (10-15 минут).

5.Учитель должен на занятиях так же знакомить детей с различными математическими играми, чтобы дети могли играть в них самостоятельно.

Можно включать элементы занимательности в сам урок. Сюда относятся и дидактические игры, и задачи в стихах, и ребусы, и задачи-смекалки, и логические задачи и загадки. Они легко «вплетутся» в общую канву урока и снимут напряжение, внесут в урок эмоциональный настрой.

Примером такой работы могут служить занимательные математические упражнения на основе проходимого материала. На уроке закрепления вычислительных навыков можно использовать следующие задания:

Этот зверек по облику ¾ нечто среднее между белкой и мышкой, с округлыми ушками, большими глазами, пушистым хвостом. В лесах, где он живет, летом слышится кашель, кто-то посвистывает, ворчит. Так перекликаются эти зверьки.

4: 2 + 6 + 2 Сурок ¾ 5

Соня ¾ 10

Барсук ¾ 4

Все лето ест и роет, роет и ест. Ест траву до полутора кг в день, гусениц, жуков, улиток. Роет нору до 7 м глубиной, а на поверхности вырастают земляные холмы до 18 м в поперечнике и высотой около 1 м.

Такие задачи нетрудно придумать самому, взяв за основу биологические или исторические знания или достижения «Книги рекордов Гиннеса»(ж.).

Можно предложить такую форму работы с детьми, как самого маленького возраста, так и с учениками 2-3 классов. Учитель заготавливает карточки с задачами в стихах и пронумеровывает их. Всем желающим раздается каждый день по карточке, дети решают задачи на переменах, в свободное время или же учитель может выделить на это пару минут от урока. В классе вывешивается таблица успехов, где фиксируются все правильные ответы учеников. Итоги такого «конкурса» подводятся в конце недели или учебной четверти. Такие стихи можно найти в методических пособиях, у детских авторов или сочинить самому.

Прилетели галки, сели на палки.

Если на каждой палке сядет по одной галке,

То для одной галки не хватит палки.

Если же на одной палке сядет по две галки,

То одна из палок будет без галок.

Сколько было галок? Сколько было палок?

По тропинке вдоль кустов шло 11 хвостов.

Сосчитать я также смог, что шагало 30 ног

Это вместе шли куда-то петухи и поросята.

А теперь вопрос таков: сколько было петухов?

И узнать я был бы рад, сколько было поросят?

Ты сумел найти ответ? До свиданья, всем привет!

¾ Я на два года старше льва, ¾ сказала мудрая сова.

¾ А я в два раза старше вас, ¾ сове ответил дикобраз.

Лев на него взглянул и гордо промолвил, чуть наморщив нос:

¾ Я старше на 4 года, чем вы, почтенный иглонос. ¾

А сколько всем им вместе лет? Проверьте дважды свой ответ.

Можно на карточках также записывать и логические задачи:

Вставьте пропущенную букву и пропущенное число:

1 в 5 ?

а 3 д ?

Вставьте недостающее число:

16 ?

1 3 5 7 2 2 3 3

Можно для такой работы использовать и задачи-смекалки, и загадки. Этот интересный материал очень разнообразен, широко представлен в учебно-методической литературе и периодической печати. Часы и минуты занимательной арифметики ¾ сильнодействующее педагогическое средство, доступное каждому учителю и, самое главное, не требует длительной подготовки и не занимает много времени, для такой работы надо использовать любую свободную минуту как на уроке так и вне его.

Интересны и полезны детям будут и математические фокусы. Они должны занять достойное место во внеклассной работе по математике. Учитель может не только показывать их детям, но и знакомить с «секретами» того или иного фокуса. Тогда уже дети будут показывать их своим друзьям, родителям, а может кто-то из ребят сам придумает математический фокус. Детям будет полезно попытаться выявить закономерности, лежащие в основе того или иного фокуса. Например, догадаться, в чем суть такого фокуса:

Вот волшебная птица. Загадай число и скажи, в каких перьях слева направо оно встречается. Я это число легко угадаю!

Секрет фокуса в том, что это число является суммой чисел, стоящих первыми в тех крыльях, где встречается загаданное число.

Интересны и фокусы, связанные с угадыванием задуманного числа посредством несложных вычислений. Зная суть такого фокуса и загадывая его другим детям, ребенок, сам того не осознавая, тренирует свои вычислительные навыки.

Загадай число. Прибавьте к нему 2, полученную сумму умножьте на 4, от произведения отнимите 8.

Задуманное число будет в 4 раза меньше получившегося, то есть для того, чтобы назвать задуманное число, надо полученное разделить на 4.

Учитель еще больший авторитет приобретет в глазах своих учеников, если предложит им такой фокус, как угадывание их даты рождения.

Число, когда вы родились, умножьте на 100, к полученному произведению прибавьте порядковый номер месяца, в котором вы родились, сумму умножьте на 10 и к полученному произведению прибавьте число ваших лет. Я скажу вам, число, месяц вашего рождения и сколько вам сейчас лет.

2.4.7 Математические игры

Большую роль на внеклассных занятиях по математике играют игры, главным образом дидактические. Основная их ценность в том, что они возбуждают интерес детей, усиливают эффект самого обучения. Создание игровых ситуаций приводит к тому, что дети увлечены игрой и незаметно для себя и без особого труда и напряжения приобретают определенные знания, умения и навыки. Игра делает отдельные элементы внеклассной работы по математике эмоционально насыщенными, вносит бодрый настрой в детский коллектив, помогает эстетически воспринимать ситуацию, связанную с математикой: праздничное оформление класса, красочные оригинальные газеты, красоту древней легенды, включающей задачу, драматизацию математического задания, наконец, стройность мыслей при решении логических задач. Игра так же содействует воспитанию дисциплинированности, так как проводится по правилам.

Приведем пример игры на развитие пространственного воображения, для которой потребуется набор моделей плоских геометрических фигур (например, равносторонние треугольники, разрезанные на два равных прямоугольных треугольника, или прямоугольник и два равных прямоугольных треугольника с катетами, равными сторонам прямоугольника), на каждую пару игроков ¾ лист бумаги и карандаш.

Участники игры разбиваются на пары. Каждая пара получает одинаковый набор фигур. У них одна и та же задача: составить из имеющихся фигур как можно быстрее и больше различных геометрических фигур и зарисовать их. При этом один игрок складывает фигуры, другой их зарисовывает.

Получив фигуры, игроки по сигналу руководителя приступают к выполнению задания. Когда отдельные пары заканчивают работу, руководитель дает команду: «Стоп! Положить карандаши!» и оценивает успехи каждой пары, быстро просматривая сделанные чертежи.

Выигрывает та пара, у которой больше правильно составленных и зарисованных фигур.

Во втором круге участники пар меняются ролями и получают другой набор фигур.

Чтобы игра была наиболее эффективной, необходимо, чтобы учитель тоже включался в игру. Но не следует забывать, что игра ¾ это не самоцель, а средство для развития интереса к математике. Поэтому математическая сторона должна выдвигаться на передний план. Однако при проведении математических игр учителю необходимо соблюдать некоторые правила.

Правила должны быть простыми, точно сформулированными, доступными.

Игра не должна вызывать слишком бурной реакции детей.