Смекни!
smekni.com

Развитие математических способностей учащихся в процессе внеклассной работы по математике в начальной школе (стр. 17 из 23)

Примерами таких заданий могут служить математические ряды:

1, 3, 5, 7, 9, ?

1, 3, 4, 7, 11, 18, ?

Текстовые задачи на развитие логического мышления, работу над которыми мы предлагаем проводить с детьми следующим образом:

Сегодня мы будем отгадывать интересные загадки. Я расскажу одну загадку и расскажу то, о чем в ней говорится.

Задача 1. Было три фигурки: треугольник, круг и квадрат (учитель одновременно изображает это в левой части доски). Каждая из них жила в одном из трех домиков: первый домик был с высокой крышей и маленьким окном, второй с высокой крышей и большим окном, третий с низкой крышей и большим окном. (учитель рисует домики, как на рисунке).

Треугольник и круг жили в домиках с большим окном, а круг и квадрат в домиках с высокой крышей (по мере рассказа учитель дает схематическое изображение этих суждений справа от изображения домиков). Нужно отгадать, в каком домике живет каждая фигурка (изображение вопроса задачи дается еще правее).

Решение. Давайте подумаем, как отгадать эту загадку. Что нам известно про фигурки? Нам известно, что треугольник и круг живут в домиках с большим окном, а круг и квадрат в домиках с высокой крышей. Про какую фигурку известно больше всего? Конечно, про круг. Что известно? Что круг живет в домике с высокой крышей и большим окном. Есть у нас такой домик? Да, это домик 2. Напишем цифру 2 в ответ рядом с кругом.

Что теперь можно узнать? Можно узнать, где живет треугольник. Он живет в домике 3. Почему? Потому что в загадке сказано, что треугольник живет в домике с большим окном. А так как в одном таком домике живет круг, то в другом живет треугольник. Напишем в ответе рядом с треугольником цифру 3.

А где живет квадрат? Квадрат живет в домике 1, потому что этот домик остался свободным. Напишем в ответе рядом с квадратом цифру 1.

Когда ученики хорошо освоят такие несложные логические задачи, им можно предложить более трудные.

Задача 2. Миша, Сережа, Дима, Валера, Костя рисовали машины. Кто-то рисовал пожарную машину красным карандашом, кто-то гоночную машину синим фломастером, кто-то грузовую машину коричневой ручкой, кто-то легковую машину синим карандашом, кто-то легковую машину коричневым фломастером. Миша и Сережа рисовали карандашом, Сережа и Дима рисовали одинаковые машины, Дима и Костя рисовали одинаковым цветом. Кто что рисовал?

После решения задач указанного вида с опорой на наглядно представленное условие целесообразно проводить работу только с текстовой частью условий этих задач (то есть без изображения суждений), чтобы дети практиковались рассуждать. Наряду с этим полезно также предлагать детям самостоятельно составлять подобные задачи. Здесь возможны два варианта. На первом этапе учитель предлагает детям два звена условия, где говорится о предметах и их признаках, а суждения, характеризующие связи предметов и признаков, дети придумывают сами. На втором этапе дети сами сочиняют всю задачу.

Для повышения эффективности обучения и развития детей следует позаботиться прежде всего о содержании предлагаемых задач, их потенциальн6ых дидактических возможностях и методике работы с ними. В этом смысле заслуживают внимания задачи, допускающие не одно возможное решение, а несколько (здесь имеются в виду не разные способы нахождения одного и того же ответа, а существование разных решений-ответов и их поиск, то есть решение рассматривается не как процесс, а как результат-ответ).

Необходимость в использовании таких задач особенно остро ощущается в условиях дифференцированного и индивидуализированного обучения. Одно дело, когда ребенок поставлен в рамки отыскания единственного возможного решения, и другое ¾ когда перед ним открывается многоходовой, со многими выходами лабиринт. В первом случае ¾ все или ничего, во втором ¾ движение по ступенькам разного уровня. В зависимости от знаний, способностей и развития один ученик может подняться на одну ступеньку, другой ¾ на две, третий ¾ на три и так далее. Задача в этом случае не сковывает ученика жесткими рамками одного решения, а открывает ему возможность для поисков и размышлений, исследований и открытий, пусть на первый раз и маленьких. И оценивать при этом деятельность ученика удается в зависимости от того, кто сколько нашел решений.

Предлагаем несколько таких задач, которые считаем необходимым использовать на внеклассных занятиях по математике.

Незнайка пытался записать все примеры на сложение трех однозначных чисел, чтобы в результате каждый раз получалось 20 (некоторые слагаемые могут быть одинаковыми), но все время ошибался. Помогите ему решить эту задачу.

Эта задача имеет 8 решений. Чтобы не пропустить ни одного из них, необходимо записывать примеры в определенной последовательности. Например, начать запись с наибольших возможных двух первых слагаемых, а затем последовательно уменьшая на единицу второе слагаемое, а в двух случаях ¾ и первое.

Три богатыря ¾ Илья Муромец, Добрыня Никитич и Алеша Попович, защищая от нашествия родную землю, срубили Змею Горынычу все 13 голов. Больше всех срубил Илья Муромец, а меньше всех ¾ Алеша Попович. Сколько голов мог срубить каждый из них?

В примерах на вычисление Незнайка перепутал знаки действий и числа, записав:

1) 6 4 + 5 = 26

2) 42 7 + 3 = 21

Запишите правильно примеры, используя те же числа (знаки действий можно использовать и другие).

Решение:

1) 6 5 – 4 = 26 или 5 4 + 6 = 26

2) 42 – 7 3 = 21 или 42 3 + 7 = 21

Шпунтик и его друзья из данных фигур составляли новые. Каждый из них из двух таких многоугольников, как показано на рисунке, составил новый и нашел сумму длин его сторон. Ответы у них получились разные, но у всех правильные. Как это могло быть и какие ответы они получили?

Решение:

И сказал Кощей Ивану-Царевичу: «Жить тебе осталось до утра. А утром я задумаю три цифры а, в и с, ты мне назовешь три числа м, н, и к. Тогда я назову тебе число ам + вн + ск, и ты должен отгадать, какие цифры я задумал. Не отгадаешь ¾ голова с плеч». Надо бы помочь Ивану-Царевичу. Что вы ему посоветуете?

Решение: Ученики, которые хорошо решают задачи на представление числа в виде суммы разрядных слагаемых и обратные им задачи, поймут идею решения предложенной задачи. Простейшее решение ¾ назвать числа 100, 10 и 1. Можно назвать и числа 200, 20, 2 или 300, 30,3 и так далее, но тогда названное Кощеем число Иван-Царевич должен делить на 2, 3 и так далее. Последние решения более интересные и требуют от учеников большей сообразительности.

Задачи с многовариантными решениями весьма полезны для внеклассных занятий в качества олимпиадных заданий, так как открываются возможности по-настоящему дифференцировать результаты каждого участника. Такие задачи могут с успехом использоваться и в качестве дополнительных индивидуальных заданий для тех учеников, которые легко и быстро справляются с основными во время самостоятельной работы на уроке, или для желающих в качестве дополнительных домашних заданий.

Большое значение, особенно для самых юных математиков, имеют задачи в стихах. Такие задачи интересны и доступны детям. Они вносят некоторую живость в занятие, воспринимаются детьми как некоторая игра. Кроме того, они воспитывают и эстетические чувства. Такие стихотворные задания учителю не сложно сочинить и самому, взяв за основу какую-либо задачу, можно использовать и стихи детских авторов, задав после прочтения вопрос.

Котик с мышкою дружил, мышке тапочки купил.

И на все 4 лапки натянула мышка тапки.

Побежала по тропинке, да споткнулась о травинку.

С лапки тапочка упала и куда-то запропала.

Тапку мышка не нашла и без тапочки пошла.

Сколько тапочек осталось у мышки?

Мышка зерна собирала, по 2 зернышка таскала.

Принесла уж 9 раз. Каков у мышки стал запас?

На двух малютках-яблоньках росли четыре яблока.

В три раза больше на одной. А сколько яблок на другой?

В 9 сели в электричку мы на станции «Пески»,

А в 12, как обычно, прибыли на «Василики».

Сколько времени в пути были мы? Ответ найди.

Мы не возьмемся в этой работе описывать все виды внеучебных математических задач, остановимся на рассмотренных выше. Укажем лишь, что учителю следует помнить при подборе заданий для проведения внеклассной работы по математике, насколько важно облечь математический вопрос в интересную для учащихся форму или внести в решение задачи такое незначительное, но любопытное затруднение, которое могло бы приучить детский ум к самостоятельности, или, наконец, предложить трудную на первый взгляд задачу, но решающуюся легко и неожиданным образом.

Таким образом, изучив учебно-методическую литературу по проблеме организации внеклассной работы по математике, можем сделать следующие выводы:

Учащиеся начальных классов наиболее нуждаются в том, чтобы их первоначальное и последующее знакомство с математическими истинами носило не сухой характер, а порождало бы интерес и любовь к предмету, развивало бы в учащихся способность к правильному мышлению, острый ум и смекалку и тем самым вносило бы оживление в преподавание предмета.

Не стоит умалять значения внеклассной работы по математике в начальной школе, ведь именно в этом возрасте ребенок определяет свое отношение к предметам школьного курса. Внеклассная же работа по математике позволит привить ученикам интерес к предмету, поддерживать и культивировать его, развивать общие и творческие способности и, конечно же, математические, компоненты которых как раз и формируются наиболее активно в этом возрасте.

Внеклассная работа имеет некоторые особенности, которые учителю необходимо учитывать, чтобы эффективность проводимой им работы была максимальной.

Формы внеклассной работы по математике очень разнообразны, учителю, проводящему внеклассную работу систематически, можно их комбинировать.

Внеклассная работа зависит от индивидуальных интересов учителя, его опыта, вкусов, особенностей учеников каждого конкретного класса. Однако при проведении той или иной формы внеклассной работы по математике, учителю необходимо учитывать некоторые методические рекомендации.