В возрасте четырех – семи лет возникает наглядно-образное мышление в простейшей форме преимущественно у дошкольников. Дошкольники мыслят лишь наглядными образами и еще не владеют понятиями (в строгом смысле) [17].
В школьном возрасте в процессе систематического мышление ребенка начинает перестраиваться и развивается теоретическое мышление.
По мере формирования теоретического мышления ребенок, подросток все больше учится осознавать обобщенные закономерности явлений. Ребенок не столько все глубже познает действительность, по мере того как развивается его мышление, сколько его мышление все более развивается, по мере того как углубляется его познавательное проникновение в действительность.
С 11 до 14 лет резко возрастает значимость причинных связей в мышлении ребенка, причем сначала сильно преобладает интерес к причинам явлений. Затем соотношение изменяется: подростка начинает больше интересовать будущее, его мышление начинает направляться на раскрытие следствий. Вместе с тем от установления единичных причинно-следственных зависимостей в частных наглядных ситуациях оно поднимается к пониманию общих закономерностей.
Новый уровень отвлеченной теоретической мысли сказывается также во взаимоотношениях мышления и речи, а также мышления и наглядно-образного содержания восприятия, представления.
В отношении между мышлением и речью новый уровень мышления находит себе выражение в том, что: а) значительную роль в речи начинают играть термины; б) другим выражением того же сдвига в мышлении является развивающееся в этот период понимание метафорического переносного значения слов; в) особенно заостренно сказываются особенности речевой формы отвлеченного мышления в умении оперировать формулами с буквенными обозначениями (алгебра, логика).
Развитие мышления ребенка происходит поэтапно, представляет собой некоторые ступени развития. При этом высшие ступени, развиваясь, не вытесняют низших, а преобразуют их. Когда развивается теоретическое мышление, то ни наглядно-действенное, ни наглядно-образное мышление, конечно, не исчезают, а преобразуются, совершенствуются, сами поднимаются на высшую ступень. Между ними создаются многообразнейшие, сложные, от случая к случаю индивидуально варьирующиеся взаимоотношения.
На различных этапах развития мышления разные области знания являются той базой, на которых формируются более высокие формы мышления, на которых оно раньше всего переходит на высшую ступень. В раннем возрасте такой областью является арифметика. При переходе из начальной в среднюю школу такую же роль в развитии отвлеченного мышления может играть алгебра. В разные периоды разные науки вносят каждая свой специфический вклад в развитие мышления и могут явиться тем плацдармом, на котором раньше формируются те или иные стороны более высоких ступеней мышления [24].
Логическое мышление как феномен изучается различными науками: философией, психологией, логикой. Каждая из них по-своему, что вполне справедливо, определяет его сущность.
Так, например, в одних источниках логическим мышлением называют процесс мышления, в котором умозаключения строго основываются на правильных суждениях. При таком мышлении явление получает убедительное объяснение, безошибочно устанавливаются причины и следствия, выявляются связи и отношения между понятиями, которые выражаются в суждениях, верность которых нельзя опровергнуть.
В других – определяют словесно-логическое мышление как один из видов мышления, характеризующийся использованием понятий, логических конструкций.
В свою очередь, в словаре психологических понятий К.К. Платонова логическое мышление определяется как “вид мышления, сущность которого в ориентировании понятиями, суждениями и умозаключениями с использованием законов логики” [19].
Отметим, что в психолого-педагогической литературе “логическое мышление” практически отождествляется с понятием “абстрактное”, “теоретическое”, “понятийное”, “категориальное”, “словесно-логическое (дискурсивное)” мышление, иногда они рассматриваются как синонимы.
Но при этом все сходятся в том, что логическое мышление – есть абстрактное, аналитическое, синтетическое мышление, функционирующее на базе языковых средств, активно развивающееся у человека, начиная с определенного возраста – с началом его обучения.
Цель развития логического мышления (определенность, последовательность, доказательность мысли) достигается решением следующих задач: овладение основными мыслительными операциями, структурой логических форм мышления, переносом приемов мыслительной деятельности из одной области знаний в другую. Организация логической подготовки базируется на принципах преемственности, учета возрастных особенностей, раскрытия общезначимости логических форм и отношений и др.; а содержание ее включает основные логические умения и соответствующие им мыслительные операции. Развитие логического мышления осуществляется посредством изучения процесса мышления, активного использования речи, соединения и взаимообогащения всех видов мышления.
Отметим, что развитие логического мышления непосредственно связано с процессом обучения математике. При этом многие исследователи отмечают, что одной из важнейших задач обучения, в том числе и математике, в школе является формирование у учащихся навыков осуществления логических операций, обучение их различным приемам логического мышления, вооружение знаниями логики и выработки у школьников умений и навыков использования этих знаний в учебной и практической деятельности.
В результате правильно организованного обучения математике школьники весьма быстро приобретают навыки логического мышления, в частности, умение обобщать, классифицировать и аргументированно обосновывать свои выводы.
Вместе с тем нет единого подхода к решению вопроса, как организовать такое обучение математике. Одни считают, что логические приемы являются неотъемлемой частью математики как науки, основы которой включены в содержание образования, поэтому у учащихся при изучении математики автоматически развивается логическое мышление на основе заданных образов (В.Г. Бейлинсон, Н.Н. Поспелов, М.Н. Скаткин).
Другой подход выражается во мнении части исследователей о том, что развитие логического мышления только через изучение учебных предметов, в том числе и математики, является малоэффективным, такой подход не обеспечивает полноценного усвоения приемов логического мышления и поэтому необходимы специальные учебные курсы по логике (Ю.И. Веринг, Н.И. Лифинцева, В.С. Нургалиев, В.Ф. Паламарчук).
Еще одна группа ученых (Д.Д. Зуев, В.В. Краевский) считают, что развитие логического мышления учащихся должно осуществляться на конкретном предметном содержании учебных дисциплин через акцентуацию, выявление и разъяснение встречающихся в них логических операций.
Но каков бы ни был подход к решению этого вопроса, большинство исследователей сходятся в том, что развивать логическое мышление в процессе обучения математике это значит: развивать у учащихся умение сравнивать наблюдаемые предметы, находить в них общие свойства и различия; вырабатывать умение выделять существенные свойства предметов и отвлекать (абстрагировать) их от второстепенных, несущественных; учить детей расчленять (анализировать) предмет на составные части в целях познания каждой составной части и соединять (синтезировать) расчлененные мысленно предметы в одно целое, познавая при этом взаимодействие частей и предмет как единое целое; учить школьников делать правильные выводы из наблюдений или фактов, уметь проверять эти выводы; прививать умение обобщать факты; развивать у учащихся умение убедительно доказывать истинность своих суждений и опровергать ложные умозаключения; следить за тем, чтобы мысли учащихся излагались определенно, последовательно, непротиворечиво, обоснованно.
Решение задач на построение, несомненно, развивает логическое и активное мышление учащихся. Ни одни задачи не содействуют так развитию в учениках наблюдательности и правильности мышления, представляя в то же время для них и наибольшую привлекательность, как геометрические (задачи) на построение.
Большое значение для развития логического мышления учащихся имеют и задачи на построение. Наличие анализа, доказательства и исследования при решении большинства таких задач показывает, что они представляют собой богатый материал для выработки у учащихся навыков правильно мыслить и логически рассуждать. При решении задач на построение они имеют дело не с конкретной, определенной фигурой, а должны создать необходимую фигуру, подвергающуюся различным изменениям в процессе решения. Вскрывая взаимосвязи между данными элементами, видим, как с изменением одних изменяются другие и даже вся фигура. Этим мы приучаем учащихся к диалектическому методу мышления и по возможности устраняем формализм в знаниях.
Трудно переоценить роль задач на построение в математическом развитии школьников. Они по своей постановке и методам решения не только наилучшим образом стимулируют накопление конкретных геометрических представлений, но и развивают способность отчетливо представлять себе ту или иную геометрическую фигуру и, более того, уметь мысленно оперировать элементами этой фигуры. Задачи на построение могут способствовать пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования – все это является важной предпосылкой развития пространственного мышления школьников. Они сильно развивают логическое мышление, геометрическую интуицию.
Между тем заметим, что процесс формирования логического мышления, общелогических умений, как компонента общего образования, должен быть целенаправленным, непрерывным и связанным с процессом обучения математике на всех ее ступенях.