Смекни!
smekni.com

Решение задач на построение в курсе геометрии основной школы как средство развития логического мышления школьников (стр. 7 из 17)

Различными способами хорошо решать задачи в конце учебного года, при повторении курса геометрии, когда учащиеся уже имеют достаточные навыки в решении задач на построение. Задачу, допускающую различные способы решения, лучше задавать на дом, чтобы они не только решили, но и нашли наиболее простое решение.

3.3 Доказательство

После того как фигура построена, необходимо установить, удовлетворяет ли она условиям задачи, то есть показать, что фигура, полученная из данных элементов определенным построением, удовлетворяет всем условиям задачи. Значит, доказательство существенно зависит от способа построения. Одну и ту же задачу можно решать различными способами, в зависимости от намеченного при анализе плана построения, а поэтому, и доказательство в каждом случае будет свое. Доказательство представляет собой часть решения задачи, по своему логическому содержанию обратную анализу. Если в анализе устанавливается, что всякая фигура, удовлетворяющая поставленным условиям, может быть найдена таким-то и таким-то путем, то в этой, третьей части решения доказывается обратное положение. Это обратное положение в общем виде может быть сформулировано так: если некоторая фигура получена из данных элементов таким-то построением, то она действительно удовлетворяет поставленным условиям.В Приложении 3 приведено решение задачи: “Построить трапецию по четырем сторонам”.

При решении простейших задач, когда все условия задачи находят непосредственное отражение в плане построения, нет необходимости доказывать, что фигура, полученная из данных элементов таким построением, является искомой. Например: “Построить треугольник по двум сторонам и углу между ними”. Здесь доказательство сводится к простой проверке, такие ли взяли стороны, как данные, и будет ли построенный угол равен данному. В подобных задачах доказательство является излишним, ибо правильность решения обеспечивается соответствием построения анализу и данным условия задачи.

Доказательство не просто зависит от анализа и построения, между ними существует взаимосвязь и взаимообусловленность. Построение проводится по плану, составленному при анализе. Таких планов можно указать несколько. Построение и доказательство являются своеобразным критерием правильности и рациональности составленного плана. Если план не осуществим имеющимися инструментами или же построение оказывается нерациональным, мы вынуждены искать новый план решения. Аналогичным образом и доказательство, и исследование влияют на анализ, предопределяя нередко выбор плана решения.

Хотя доказательство при решении задач на построение проводится аналогично доказательству теорем, с использованием аксиом, теорем и свойств геометрических фигур, между ними имеется и некоторое различие. При доказательстве теорем в большинстве случаев без труда выделяют условие и заключение. При решении задач на построение уже труднее найти данные, на основании которых можно доказать, что построенная фигура является искомой. Поэтому при решении конструктивных задач в классе целесообразно иногда специально выделять, что дано, и что требуется доказать. Например, при решении задачи: “Построить ромб по двум его диагоналям” предлагаем ученику записать, что дано (диагонали взаимно перпендикулярны и, пересекаясь, делятся пополам) и что требуется доказать (стороны равны). В свою очередь при решении задач дома и в контрольных работах можно не требовать оформления доказательства с выделением отдельно условия и заключения. Нет надобности требовать проведения особого доказательства в задачах, где правильность решения очевидна [11].

3.4 Исследование

При построении обычно ограничиваются отысканием одного какого-либо решения, причем предполагается, что все шаги построения действительно выполнимы. Для полного решения задачи нужно еще выяснить следующие вопросы: 1) всегда ли (то есть при любом ли выборе данных) можно выполнить построение избранным способом; 2) можно ли и как построить искомую фигуру, если избранный способ нельзя применить; 3) сколько решений имеет задача при каждом возможном выборе данных? Рассмотрение всех этих вопросов и составляет содержание исследования [2].

Таким образом, исследование имеет целью установить условия разрешимости и определить число решений. Нередко школьники и даже учителя проводят исследование, произвольно выбирая те или иные случаи, причем неясно, почему рассматриваются именно такие, а не какие-либо иные случаи. Остается неясным также, все ли возможные случаи рассмотрены. Практически в большинстве случаев удается достигнуть необходимой полноты исследования, если проводить это исследование по ходу построения, что является наиболее доступным и целесообразным способом. Сущность этого приема состоит в том, чтобы перебрать последовательно все шаги, из которых слагается построение, и относительно каждого шага установить, всегда ли указанное на этом шаге построение выполнимо, а если выполнимо, то однозначно ли.

Рассмотрим решение и исследование задачи: “Построить окружность, касающуюся данной прямой PQ и данной окружности (О; ОА) в заданной на ней точке А”.

Рис. 2

Решение. Решаем эту задачу методом геометрических мест. Проводим прямую ОА (рис. 2). В точке А строим касательную АВ к данной окружности, а затем — биссектрисы углов РВА и ABQ. Точки пересечения прямой ОА с прямыми ВМ и BN и будут центрами искомых окружностей.

Проводя исследование по построению, легко обнаруживаем, что наше решение не применимо, если OA

PQ. Для такого случая рассматриваем решение задачи отдельно. В результате получим, что если ОА не перпендикулярна PQ, то задача имеет два решения, за исключением случая, когда окружность (О; ОА) пересекает PQ в точке А, так как тогда прямые ВМ, ВN и ОА пересекутся в точке А, и окружности не получим. Если же OA
PQ
, но А не лежит на PQ, то получаем одну окружность с центром на ОА и радиусом, равным половине расстояния от точки А до данной прямой PQ. Если же при этом А лежит на PQ, то задача неопределенная.

Таким образом, для задачи имеются лишь 4 характерные конфигурации исходных данных:

1) ОА не перпендикулярна PQ и А не принадлежит PQ — 2 решения;

2) OA не перпендикулярна PQ и A принадлежит PQ — нет решений;

3) OA

PQ, но A не принадлежит PQ — 1 решение;

4) OA

PQи А принадлежит PQ — бесконечное множество решений [11].

В итоге таких рассуждений решается вопрос о возможности и однозначности построения искомой фигуры данным способом. Но остается еще открытым вопрос: не возникнут ли новые решения, если изменить как-либо способ построения? Иногда удается доказать, что всякое решение данной задачи совпадает с одним из уже полученных решений. Если же это не удается, то можно предположить, что задача имеет другие решения, которые могут быть найдены другими способами. В этих случаях надо тщательно проверить, нет ли каких-либо иных возможных случаев расположения данных или искомых фигур, которые не были предусмотрены ранее проведенным анализом.

3.5 Методические рекомендации по обучению решению задач на построение

Как и в каком месте курса геометрии следует знакомить учащихся с общей схемой решения задач на построение? Здесь возникает два различных методических вопроса [10]. Первый из них — это вопрос о том, с какого времени в преподавании геометрии при решении задач должны фактически производиться анализ, построение, доказательство, исследование? Второй вопрос, отличный от первого, — это вопрос, когда учащийся должен быть ознакомлен с логической схемой решения задачи.

Обращаясь к первому вопросу, заметим, что первым по времени вводимым элементом лучше выбрать построение в смысле перечисления и описания тех или иных операций. Здесь имеется в виду самое описание процесса употребления инструмента (“прикладываем два острия ножек циркуля к точкам Ми N, затем, не изменяя расстояния между остриями, помещаем одно из них в точку О” и т. п.). На более высокой ступени отдельные операции просто называются (“описываем из точки Оокружность радиусом MN” или “опускаем из точки С перпендикуляр на прямую АВ”). Наконец, последней ступенью можно было бы считать ту, когда в качестве элементов построения могут называться и довольно сложные по своему выполнению, но хорошо известные учащимся задачи (“строим треугольник по гипотенузе и катету”, “проводим из точки Мкасательную к окружности” и т. п.).

Вторым моментом по времени появления в школьном курсе лучше выбрать исследование задачи. Первый элемент исследования появляется при решении задачи о построении треугольника по трем сторонам, в виде вопроса о том, можно ля выбрать все три стороны произвольно. К этому должно скоро прибавиться знакомство с возможностью существования нескольких решений одной задачи. Этому моменту нужно придавать весьма большуюпринципиальную значимость. Дело в том, что слова “найти точку” обозначают требование “найти все точки, которые...” (а не просто “какую-либо точку, которая...”). Аналогично “решить уравнение” значит “найти все числа, которые удовлетворяют уравнению” (а не просто “какое-либо число, которое...”). “Построить окружность” – это “построить, все окружности, которые...” (а не просто “построить какую-либо окружность, которая...”) и т. д.