Смекни!
smekni.com

Розробка учбового матеріалу для викладання вищої математики на тему "Наближені методи обчислення визначених інтегралів" (стр. 4 из 5)

(2.2.7)

На рис (2.6) показано геометричне зображення узагальненої формули трапеції (2.2.5).

Рис.2.6 Геометричне зображення узагальненої формули трапецій

Точне значення інтеграла, тобто ліва частина наближеної рівності (2.2.5) це площа криволінійної трапеції, що обмежена зверху графіком функції

. Наближене значення інтеграла (права частина рівності (2.2.5) - це площа фігури, що зверху обмежена ламаною
(рис.2.6).

З формули (2.2.7) видно, що чим більшим є число

, тим меншою буде похибка квадратурної формули (2.2.5). Крім того, з (2.2.7) видно, що алгебраїчний степінь точності і квадратурної формули трапеції дорівнює одиниці (так же, як і формули центральних прямокутників).

2.3 Метод Симпсона

Якщо в квадратурній формулі Ньютона-Котеса (2.12) взяти

то здобудемо таку формулу [1]

(2.3.1)

За формулою (2.11) знаходимо

. Врахувавши властивості коефіцієнтів Котеса, знаходимо
.

Після підстановок знайдених коефіцієнтів Котеса в формулу (2.3.1), отримуємо квадратурну формулу, яка називається „формулою Симпсона” або „формулою парабол”:

(2.3.2)

Рис.2.7 Геометричне тлумачення „формули парабол"

Назва квадратурної формули (2.3.2) як „формула парабол" випливає з геометричного тлумачення інтеграла, якщо криву

замінити параболою, що проходить через три точки
(на рис.2.7 парабола показана пунктиром) і наближене значення інтеграла обчислювати як площу криволінійної трапеції, яка зверху обмежена графіком цієї параболи.

Знайдемо залишковий член квадратурної формули Симпсона. Для цього з наближеної рівності (2.3.2) запишемо формулу для похибки

(2.3.3)

Розкладемо функцію

у ряд Тейлора в околі точки
, припускаючи функцію
такою, що розкладання можливе [7]:

Знайдемо точне значення інтеграла:

(2.3.4)

Тепер знаходимо

(2.3.5)

Підставимо (2.3.3) і (2.3.5) у праву частину рівності (2.3.4):

Отже похибка квадратурної формули Симпсона може бути записана у вигляді

(2.3.6)

З формули (2.3.6) видно, що алгебраїчний степінь точності квадратурної формули Симпсона дорівнює трьом, тобто ця формула має підвищений степінь точності.

Формулу Симпсона також можна застосовувати не до всього відрізка інтегрування, а до окремих його частин. Для цього поділимо відрізок

на
частин рівної довжини
кожний, як показано на рисунку (2.8)

Рис.2.8 Геометричне тлумачення формули Симпсона

Візьмемо

-й подвоєний відрізок, функцію
проінтегруємо на цьому відрізку, використовуючи квадратурну формулу (2.3.1) з похибкою (2.3.5)

.

Просумувавши інтеграли за всіма подвоєними відрізками, добудемо узагальнену формулу Сімпсона

Якщо прийняти умову, що відстань між будь-якими двома сусідніми вузлами однакові і дорівнює

, то останню формулу можна переписати в більш простому вигляді

Тепер запишемо окремо узагальнену формулу Сімпсона та її похибку

(2.3.7)

(2.3.8)

Геометричне зображення формули (2.3.7) показане на рисунку (2.8).

Наближене значення інтеграла (права частина наближеної рівності (2.3.7) - це площа криволінійної трапеції, яка зверху обмежена кусками парабол

(крива показана пунктиром).

На кожному подвоєному відрізку графік функції

наближається своєю параболою.

З формули (2.3.7) видно, що з ростом

похибка дуже швидко зменшується.

2.4 Практичне порівняння точності методів наближеного обчислення інтегралів 3-ма методами

Застосовуючи ці три метода наведемо приклад:

Обчислимо наближене значення інтеграла

,

використовуючи квадратурні формули прямокутників, трапеції та Сімпсона. Для цього підготуємо таблицю значень підінтегральної функції

у точках відрізка
Значення підінтегральної функції у вузлах
i xi f (xi)
0 0 0,00000000
1 0,1 0,10049875
2 0,2 0, 20396078
3 0,3 0,31320918
4 0,4 0,43081316
5 0,5 0,55901695
6 0,6 0,69971418
7 0,7 0,85445885
8 0,8 1,0244998
9 0,9 1,2108262
10 1 1,4142135

Квадратурні формули прямокутників (лівих, правих, центральних) дать такі результати:

,