Смекни!
smekni.com

Роль умственного приема классификации в формировании математических понятий у младших школьников (стр. 11 из 20)

1. В множестве натуральных чисел всегда выполнима операция сложения.

2. В множестве натуральных чисел всегда выполнима операция умножения.

3. а + b = b + а (переместительное свойство сложения).

4. а • b = b • а (переместительное свойство умножения).

5. (а + b) +с = а + (b +с) (сочетательное свойство сложения).

6. (а • b) • с =а • (b • с) (сочетательное свойство умножения).

7. (а+b) • с =а *с+b *с (распределительное свойство умножения относительно сложения).

8. а + 0 = а.

9. а • 0 = 0.

10.а + 1 = а'.

11. а • 1= а.

Операции над многозначными числами основываются на позиционной системе счисления.

Определение. Счислением (нумерацией) называется совокупность способов устного наименования и письменного обозначения чисел.

Существуют непозиционные и позиционные системы счисления.

В непозипионной системе счисления каждый знак (цифра) служит для обозначения одного и того же числа. Примером непозиционной системы счисления является римская нумерация, которой широко пользуются в настоящее время. Например, XII - это 10 + 1 + 1 =12.

Позиционная система счисления базируется на поместном значении цифр, заключающееся в том, что один и тот же знак (цифра) означает одно и то же число единиц разных разрядов независимо от того, на каком месте в записи числа стоит этот знак. Например, в числе 737 цифра 7 означает числа семь и семьсот.

Изучение темы "Нумерация чисел" учитель должен начинать с формирования представления о позиционной системе счисления, в которой дети не только знакомятся с существованием систем счисления с разными основаниями, но и понимают необходимость существования позиционной системы счисления. Это можно осуществить в ходе такой практической работы.

Пример 1. Дается задание измерить достаточно большой отрезок маленькой меркой (рис. 2.19). Дети уже знают, что лучше взять для измерения большую мерку, им предлагается тогда мерка, которая содержит 41маленьких мерки (большая мерка может содержать какое угодно число маленьких мерок, но обязательно целое их число). Ученики получили, например, что большая мерка поместилось 3 раза, а в остатке поместилось 2 маленькие мерки. В результате у них получилось число 32 с основанием системы счисления 4.

Рис. 2.19

В зависимости от длины измеряемого отрезка можно брать для измерения большие мерки, которые содержат по 2, 3, 4, 5, ... маленьких мерок. Тем самым, ученики приходят к выводу, что существуют позиционные системы счисления с различными основаниями. Далее можно провести беседу о существовании в практической деятельности человека систем счисления с основанием 7 (число дней в неделе), 12 (число месяцев в году), 100 (число лет в веке), 60 (число минут в часе) и т. д.

В традиционном обучении при изучении нумерации чисел у учащихся отрабатываются понятия "десятки", "сотни", что приводит к смешению устной нумерации и письменной. Этого нельзя делать, потому, что это может привести к ошибкам. Например, дети часто говорят, что в числе 325 два десятка (вместо - 32 десятка), В дальнейшем это приводит к затруднениям в выполнении операций над многозначными числами, которые базируются на операциях над однозначными числами. Поэтому при изучении многозначных чисел нужно обращать внимание детей на разряды и на число единиц в разрядах. Например, в числе 6325 шесть единиц четвертого разряда, три единицы третьего разряда, две единицы второго разряда и пять единиц первого разряда. Такая работа позволит ученикам легче и быстрее усвоить операции над многозначными числами, которые производятся над разрядами. Законы операций над многозначными числами должны использоваться учителем для формирования вычислительных навыков.


VI. Числовые выражения. Числовые равенства и неравенства, их свойства

Любое число уже является числовым выражением. Если А и В -числовые выражения, то А + В, А - В, А • В, А : В также являются числовыми выражениями. Выполнив операции; которые имеют место в числовом выражении, получают значение числового выражения. Существуют выражения, которые не имеют значения. Например, выражение 28 ; 8 - 44 не имеет числового значения.

С первых дней пребывания в школе дети сталкиваются с различными числовыми выражениями и учатся находить их числовое значение. Значительно меньше в школе уделяется внимание числовым равенствам и неравенствам, их свойствам, что сказывается при их обучении в старших классах. Поэтому учитель должен предлагать учащимся достаточное количество упражнений следующих видов.

1. Являются ли данные равенства верными:

10-3*2=2*2; 5+2*3=6+4?

2. Являются ли данные неравенства верными:

8-3 • 2<3 +4; 14: (5 + 2) >2 + 3 ?

3. Зная, что 2 + 3 = 10 : 2 и 4 +7 > & + 2, поставьте вместо звездочки знак " - ", " > ", " < ", не вычисляя значения числовых выражений, стоящих в правой и левой частях числовых равенств и неравенств:

(2 + 3) + 4 * 10 : 2 + 4 ; (2 + 3) - 4 *10 : 2 - 4 ;

(2 + 3) • 3 * (10 : 2) • 3 ; 4+7-3*8+2-3;

(4 + 7) • 2 • (8 + 2) • 2 .

VII. Выражение с переменными, его область определения

Если числовое выражение содержит и буквы, то мы имеем выражение с переменными. Например, 2а - 3 ; За + 2b с + 8 .

Выражение с переменными обычно обозначают так: f(х); А(b;с); В(х;у) Если в выражение с переменными подставить вместо букв их значения, то получится числовое выражение.Те значения переменной, при которых выражение с переменной имеет числовое значение, называется областью определения выражения с переменной. Например, областью определения выражения с переменной 2а - 3 на множестве действительных чисел является все множество действительных чисел, а на множестве натуральных чисел - натуральные числа, начиная с двух (если а = 1 , то 2 • 1 - 3 не является натуральным числом).

В начальных классах учитель обязан сформировать понятие о выражении с переменной и его области определения. Покажем на примерах, как это можно сделать.

Пример 1. Цель; сформировать у детей понимание необходимости введения в числовое выражение букв и представление об области определения выражения с переменной.

Учитель записывает на доске несколько числовых выражений: 1 + 2; 2+2; 3+2; 4+2. Затем он обращает внимание на то, что первое слагаемое меняется, а второе - нет. Поэтому, чтобы не продолжать ряд,

можно все эти выражения заменить одним П+ 2, где в окошечко можно подставить любое натуральное число. Учитель предлагает в окошечко подставить числа 1 ; 2 ; 3 ; 4 ; 5 и найти значение получившихся числовых выражений. Здесь область определения задана учителем.

Пример 2. Цель: научить учащихся самим находить область определения выражения с переменной.

Учитель спрашивает, какие числа можно подставить в следующие выражения: 8 - П; 3-2; П : 2; 5 – П : 3; П : 5 - 7. Дети подбором находят область определения каждого выражения с переменной.

Пример 3. Цель: научить учащихся находить область определения выражения с переменной в задачах.

Учитель предлагает следующую задачу. Сколько килограммов сахара, расфасованного в пакеты, принесли Коля и Оля, если в каждом пакете по два килограмма сахара?

Ученики записывают задачу в виде выражения 2а + 2b (или 2 • (а + b)), где а - количество пакетов, которые принес Коля, и b - количество пакетов, которые принесла Оля. Затем в ходе анализа задачи дети делают вывод, что Коля может нести не более 8 кг (от одного до четырех пакетов), а Оля - не более 6 кг (от одного до трех пакетов). Таким образом, ае{1;2;3;4} и

b е { 1; 2; 3}.

Задача имеет 12 решений, если перебрать все варианты наборов а и b .

VIII. Уравнения и неравенства, область определения, множество решений. Свойства уравнений и неравенств

Равенство (неравенство), содержащее неизвестное, называется уравнением (неравенством). Множество, элементы которого можно подставить в уравнение (неравенство) вместо неизвестного, называется областью определения уравнения (неравенства).

Те значения неизвестного из области определения, при которых уравнение (неравенство) обращается в верное числовое равенство (неравенство), называется корнями уравнения (множеством решения неравенств).

Если область определения уравнения (неравенства) не задана, то она совпадает с областью определения выражений, входящих в данное уравнение (неравенство). Например, областью определения уравнения (3 х2): х • 2 = 4 является множество (- °о; 0) U(0;оо).

Два уравнения (неравенства) называются равносильными, если у них совпадают области определения и множества решений.

Например, уравнения (3 х2 ) : х - 2 = 4 (1) и 3 х - 2=4 (2) не равносильны, так как их области определения не совпадают. Уравнения Корень (2х - 1) 2 = х (3) и 2 х - 1 = х2 (4) не равносильны, хотя их области определения и совпадают, так как уравнение (3) имеет один корень (х = 1), а уравнение (4) - два корня (х = 1 ; х = 1).

При решении любого уравнения (неравенства) его заменяют более простым равносильным уравнением (неравенством). В начальных классах формируется следующие два основных свойства равносильных преобразований.

1. Если к обеим частям уравнения (неравенства) прибавить (вычесть) выражение, имеющее ту же область определения, что и данное уравнение (неравенство), то получим уравнение (неравенство) равносильное данному.

Например, уравнения Зх=2х+4 и 3х- 2х=4 равносильны.

2 а. Если обе части уравнения умножить на выражение, имеющее ту же область определения, и которое не обращается в нуль на этой области определения, то получим уравнение, равносильное данному.

Например уравнения (3 х - 1) • (х2 + 1) = 5 (х2 + 1) и 3х - 1=5 равносильны, а (3 х 1)* (х + 1) = 5 (х + 1) и 3 х - 1=5 не равносильны.

2 б. Если обе части неравенства умножить на выражение, имеющее ту же область определения и большее нуля на этой области определения, то получим неравенство, равносильное данному.

Например, неравенства (3 х - 1) • (х2 I) > (5 х2 1) и (3 х - 1) > 5 равносильны.

В начальных классах формируется понятие об уравнении и неравенстве, их области определения, множестве решений, равносильных преобразованиях. Покажем на примерах, как можно построить обучение по их формированию.