Объект | Проекция скорости на ось ОХ', м/с | ||
в СО «Земля» | в СО «мотоциклист» | в СО «велосипедист» | |
Пункт В | 0 | -20 | -5 |
Велосипедист | 5 | -15 | 0 |
Мотоциклист | 20 | 0 | 15 |
Покажем, как были получены эти результаты, проведя решение задачи.
Решение. Для решения задачи используем классический закон преобразования (сложения) скоростей: скорость тела в неподвижной системе отсчета равна сумме скорости тела в подвижной системе отсчета и скорости самой подвижной системы отсчета:
1. В системе отсчета, связанной с Землей, скорости заданы в условии задачи и их проекции на ось ОХ соответственно равны:
2. В системе отсчета, связанной с мотоциклистом:
3. В системе отсчета, связанной с велосипедистом:
Сведения в таблицу полученных результатов дает наглядное представление об относительности скорости, о роли системы отсчета в определении последней.
Целесообразно показать, что все системы отсчета в кинематике равноправны, но следует выбирать такую систему отсчета, которая приводит к рациональному решению задачи. Для этого целесообразно решить одну и ту же задачу в разных системах отсчета.
Задача. Тело брошено вертикально вверх со скоростью
Задачу решают в системе отсчета, связанной с Землей, и в системе отсчета, связанной с одним из тел.
Решение 1. За начало отсчета координаты принимают место бросания тел на Земле. Ось OY направляют вертикально вверх. За начало отсчета времени принимают момент бросания первого тела (рис. 1).
Рис. 1
Записывают уравнение движения для первого тела:
Уравнение координаты для первого тела:
где
Записывают уравнение движения для второго тела:
Уравнение координаты для второго тела:
где
В момент встречи тел в полете их координаты равны, т. е.
Приравняв координаты и решив полученное уравнение относительно
Так как от момента бросания первого тела до момента бросания второго тела прошло время
Решение 2. За начало отсчета времени выбирают момент бросания второго тела (рис. 2), остальные условия те же, что и в первом решении.
Рис. 2
Записывают уравнение движения для первого тела:
Уравнение координаты для первого тела:
где
Записывают уравнение движения для второго тела:
Уравнение координаты для второго тела:
где
Решают систему уравнений при условии, что
Решение 3. Выбирают систему отсчета так, чтобы телом отсчета было второе тело, которое еще находится на Земле. Совместим начало отсчета координаты со вторым телом, ось направим вверх. За начало отсчета времени принимают момент бросания второго тела. Первое тело движется относительно второго тела в этой системе отсчета равномерно и прямолинейно. Первоначальное расстояние первого тела от начала координат
В этом случае задачу решают в одно действие, в то время как в первом решении – в четыре действия, во втором – в три. Следовательно, последнее решение наиболее рационально. Это первый вывод, который можно сделать на основании проведенных решений задачи.
Второй, наиболее важный, вывод: характер движения тела зависит от выбора системы отсчета: в первых двух решениях мы имели дело с равноускоренным прямолинейным движением тел, в третьем решении первое тело двигалось относительно второго равномерно и прямолинейно.
Полезны также задачи для случая, когда векторы скорости направлены под углом друг к другу.
Завершая изучение кинематики, целесообразно предложить учащимся обобщить материал об относительности в виде таблицы (табл. 2).