Как движется лодка относительно этих двух систем?
Наблюдатель на плоту, двигаясь вместе со «своей» системой координат по течению, видит, что лодка удаляется от него к противоположному берегу все время перпендикулярно течению. Он видит это и в точке А, и в точке В, и в любой другой точке. А когда через некоторое время плот окажется в точке С, лодка достигнет противоположного берега в точке С’. Относительно подвижной системы координат (плота) лодка совершила перемещение
. Разделив его на , подвижный наблюдатель получит скорость лодки относительно плота: .Совсем другим представится движение лодки неподвижному наблюдателю на берегу. Относительно «его» системы координат лодка за то же время
совершила перемещение . За это же время подвижная система отсчета вместе с плотом совершила перемещение (лодку, как говорят, «отнесло» вниз по течению). Схематически перемещения лодки показаны на рисунке. [3]Далее в этом параграфе вводятся формула сложения перемещений
и формула сложения скоростей
,а так же, чему равна скорость тела относительно неподвижной системы координат.
Мы видим, что и перемещение и скорость тела относительно разных систем отсчета различны. Различны и траектория движения (
– относительно подвижной системы и – относительно неподвижной). В этом и состоит относительность движения.Далее мы переходим к рассмотрению преобразований Галилея в курсе общей физики.
С объяснения этого понятия начинается изучение принципа относительности Галилея. Сопоставляются описания движения частицы в инерциальных системах отсчета
и , движущихся друг относительно друга со скоростью (рис. 6).Рис. 6
Для простоты выбираются оси координат так, как показано на рисунке. Отсчет времени начинается с того момента, когда начала координат
и совпадали. Тогда координаты и произвольно выбранной точки будут связаны соотношением . При сделанном выборе осей и . В ньютоновской механике предполагается, что время во всех системах отсчета течет одинаково; поэтому . Таким образом, получается совокупность четырех уравнений: , , , ,называемых преобразованиями Галилея. Эти уравнения позволяют перейти от координат и времени одной инерциальной системы отсчета к координатам и времени другой инерциальной системы. [4]
Следуя по программе, далее рассматриваются инерциальные системы отсчета и первый закон Ньютона.
Законы механики одинаково выглядят во всех инерциальных системах отсчета.
Затем необходимо познакомиться с классическим законом сложения скоростей. Мы знаем, что компоненты скорости
частицы в системе определяются выражениями , , .В системе
компоненты скорости той же частицы равны , , .В ходе некоторых вычислений формулы преобразования скоростей при переходе от системы
к системе . , , .Далее по программе рассматривается инвариантность длины, интервала времени, ускорения, а также абсолютный характер понятия одновременности.
Сравнивая методики, мы видим, что более четко, сложно преобразования Галилея изучаются в курсе общей физики. В школьном курсе вводится лишь понятие относительности движения.
Заключение
Кинематика сложна для восприятия. Причина понятна: обилие математики (алгебра, геометрия, тригонометрия в полном объеме). Упрощение же математического аппарата выхолащивает суть кинематики – классификацию движений и описание моделей.
Кроме всех очень важных понятий в кинематике учащиеся также знакомятся с не менее важной для всего курса физики идеей – идеей относительности движения, изучение которой должно быть доведено до понимания учащимися относительности координат, траекторий, перемещений и скоростей.
От идеи относительности движения в классической механике учащиеся в дальнейшем своем развитии подходят к пониманию основ специальной теории относительности.
При изучении кинематики уже имеется возможность обратить внимание учащихся на заслуги Галилея в создании научного метода познания. Наиболее важным открытием его были уравнения, связывающие координаты и время некоторого события в двух инерциальных системах отсчета. В дальнейшем они были названы преобразованиями Галилея.
Список литературы
1. Теория и методика обучения физике в школе: Общие вопросы: Учеб. пособие для студ. высш. пед. учеб. заведений / С.Е. Каменецкий, Н.С. Пурышева, Н.Е. Важеевская и др.; Под ред. С.Е. Каменецкого, Н.С. Пурышевой. – М.: Издательский центр «Академия», 2000. – 368 с.
2. Теория и методика обучения физике в школе: Частные вопросы: Учеб. пособие для студ. пед. вузов / С.Е. Каменецкий, Н.С. Пурышева, Т.И. Носова и др.; Под ред. С.Е. Каменецкого. – М.: Издательский центр «Академия», 2000. – 384 с.
3. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Просвещение, 1990. – 191 с.
4. Савельев И.В. Курс физики: Учеб.: В 3‑х т. Т. 1: Механика. Молекулярная физика. – М.: Наука. Гл. ред. физ.-мат. лит., 1989. – 352 с.
5. Бугаев А.И. Методика преподавания физики в средней школе: Теорет. основы: Учеб. пособие для студентов пед. ин-тов по физ.-мат. спец. – М.: Просвещение, 1981. – 288 с.
6. Балашов М.М. Механика за 70 уроков: Кн. для учителя: – М.: Просвещение, 1993. – 63 с.
7. Эвенчик Э.Е. и др. Методика преподавания физики в средней школе: Механика: Пособие для учителя/Э.Е. Эвенчик, С.Я. Шамаш, В.А. Орлов; Под ред. Э.Е. Эвенчик. – 2‑е изд., перераб. – М.: Просвещение, 1986. – 240 с.
8. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений/ Г.Я. Мякишев, Б.Б. Буховцев. – 11‑е изд. – М.: Просвещение, 2003. – 336 с.