Смекни!
smekni.com

Формирование мотивации учебной деятельности при изучении математических предложений (стр. 7 из 8)

Все три аспекта важны в системе школьного обучения, поэтому при изучении операций и алгоритмов их выполнения следует использовать оба способа их введения.

При содержательном способе введения операций и алгоритмов их выполнения большую роль играет выбор сюжетных задач, которые называются ведущими. В качестве ведущих следует набирать такие задачи, которые удовлетворяют следующим требованиям:

1) при выборе фабулы задачи следует учитывать и использовать практический опыт учащихся;

2) меняя числовые данные в задаче, можно рассмотреть все возможные случаи вводимой операции;

3) содержательный способ решения задачи должен быть адекватным вводимому алгоритму.

Проведение анализа задач, использованных в качестве ведущих, в учебниках математики, с точки зрения высказанных требований, может способствовать улучшению изложения материала учебников.[16]

Рассмотрим содержательный способ введения на примере алгоритма сложения дробей с разными знаменателями.

В начале урока учитель предлагает ученикам для решения следующую задачу:

«Изобразите в тетради такой же квадрат, как на рисунке. Закрасьте ½ квадрата синим цветом, ¼ - красным, 1/8 – желтым, 1/16 – зеленым. Какая часть квадрата осталась незакрашенной? Какая часть квадрата закрашена?»[9]

Ребята без труда ответят на вопросы задачи. Далее учитель задает вопрос: «Как ответить на вопрос задачи, не пользуясь рисунком? С помощью каких действий?». Этот вопрос также не будет затруднительным, ученики без труда ответят, что нужно сложить ½ +1/4 +1/8 + 1/16. Но возникает проблема, как это сделать, так как пока изучено только сложение дробей с одинаковыми знаменателями. Таким образом перед учениками ставиться цель – научиться складывать дроби с разными знаменателями. После этого учитель вводит алгоритм сложения дробей с разными знаменателями:

1. приведем эти дроби к общему знаменателю;

2. выполним сложение по правилу сложения дробей с равными знаменателями.

После введения алгоритма и выполнения нескольких примеров на закрепление, без труда решается задача, предложенная в начале урока. Плюс задачи в том, что можно сразу проверить полученный результат с тем, который получился при закрашивании квадрата.

Рассмотрим другой способ введения алгоритма – формальный, на примере сложения десятичных дробей.

В начале урока ученикам предлагаются для решения различные несложные упражнения. Например,

· Выполнить сложение: 1/7 + 5/7; 1/10 + 7/10.

· Записать в виде обыкновенной дроби числа: 0,5; 0,07.

· Представить числа в виде разрядных слагаемых: 457; 4,57; 56; 0,56.

· Назвать числа, равные числу 4,7.

· Сложить числа, представив их в виде суммы разрядных слагаемых и применив законы сложения: 286 + 37.

·

Выполнить сумму, называя каждый раз единицы каких разрядов вы складываете: 5873

326

Далее вводиться сам алгоритм сложения десятичных дробей:

1. Уровнять число знаков после запятой в слагаемых;

2. Записать слагаемые друг под другом так, что бы запятая оказалась под запятой;

3. Сложить полученные числа, как складываются натуральные числа;

4. Поставить в полученной сумме запятую под запятыми в слагаемых.

После введения алгоритма может быть рассмотрена задача, например:

«В соревнованиях по тройному прыжку Юра сделал прыжки 2,48 м, 2,76 м и 3,42 м, а Саша – 2,54 м, 2,3 м и 3,56 м. Кто из мальчиков стал победителем?»[10]


Заключение

Данное исследование проводилось с целью рассмотреть особенности организации этапа мотивации при введении математических предложений.

Основные задачи, которые ставились перед началом исследования, были выполнены. Анализ психолого-педагогической и учебно-методической литературы показал, что сформированность мотивации является важным качественным показателем эффективности учебно-воспитательного процесса. Но в то же время данной теме уделяется мало внимания, в основном идет упоминание о мотивации, говориться о ее роли, но ее сущность полностью не раскрывается.

В работе рассмотрены психологические характеристики мотивационной сферы учения, а именно потребностей, мотивов, целей, интересов. Главная же направленность мотивационной сферы – мотивы, т.е. направленность учащихся на отдельные стороны учебного процесса.

Выделены различные пути и методы формирования положительной устойчивой мотивации к учебной деятельности. Для получения более эффективного результата следует использовать не один путь, а все пути в определенной системе. Рассмотрена реализация этапа мотивации учебной деятельности при изучении математических понятий, теорем и алгоритмов. По рассмотренным методическим рекомендациям было проведено опытное преподавание.

Гипотеза, выдвинутая в начале работы, подтвердилась в ходе проведения исследования. Действительно, мотивационный этап при введении математических предложений способствует формированию у учащихся положительных мотивов учения и познавательных интересов учебной деятельности.


Библиографический список

1. Брадис, В.М. методика преподавания математики в средней школе. Государственное учебно-педагогическое издательство министерства просвещения РСФСР. М, 1954г.

2. Волович, М.Б. Наука обучать. Технология преподавания математики. М. Linka-Press, 1995г.

3. Возняк, Г.М. Прикладные задачи в мотивации обучения. // Математика в школе. №2, 1990г.

4. Глейзер, Г.И. История математики в школе. Пособие для учителей. Под редакцией В.Н. Молодшего. М. «Просвещение», 1964г.

5. Груденов, Я.И.. Совершенствование методики работы учителя математики, М: Просвещение, 1990.

6. Груденов, Я.И. Изучение определений, аксиом, теорем. М. Просвещение, 1981.

7. Дробышева, И.В. Мотивация: дифференцированный подход. // Математика в школе. № 4, 2001г.

8. Дубнов, Я.С. Беседы о преподавании математики. М. «Просвещение», 1965г.

9. Дорофеев, Г.В., Петерсон, Л.Г. Математика. Учебник для 5 класса. Часть вторая. М. «Баланс», С-инфо, 1997.

10. Зубарева, И.И., Мордкович, А.Г. Математика. 5 класс. Учебник для общеобразовательных учреждений. М. «Мнемозина», 2003г.

11. Карелина, Т.М. О проблемных ситуациях на уроках геометрии. // Математика в школе. №6, 1999г.

12. Лоповок, Л.М. Тысяча проблемных задач по математике. Книга для учащихся. М. Просвещение, 1995г.

13. Лященко, Е.И. и др. Лабораторные и практические работы по методике преподавания математики. М. Просвещение, 1988.

14. Маркова А.К., Орлов А.Б., Фридман Л.М. Мотивация учения и ее воспитание у школьников, М. Педагогика, 1983.

15. Маркова А.К., Т.А. Матис, А.Б. Орлов. Формирование мотивации учения, М. Просвещение, 1990.

16. Методические разработки по методике преподавания математики в средней школе. М. МГПИ, 1980.

17. Мордкович, А.Д. Алгебра. 9 класс. Учебник для общеобразовательных учреждений. М. «Мнемозина», 2002 г.

18. Рогановский, Н.М. Методика преподавания математики в средней школе. Минск. Высшая школа, 1990г.

19. Саранцев, Г.И. Общая методика преподавания математики. Саранск. Типография «Красный Октябрь», 1999.

20. Саранцев, Г.И. Эстетическая мотивация в обучении математике. Саранск. Типография «Красный Октябрь», 2003г.

21. Саранцев, Г.И. Формирование математических понятий в средней школе. // Математика в школе. №6, 1998г.

22. Скороходова Н.Ю. Психология ведения урока. С.Пб. Речь, 2002.

23. Таймасханов, У.Д. Создание проблемных ситуаций. // Математика в школе. №5, 1994г.

24. Фридман, Л.М. Теоретические основы методики обучения математике. Пособие для учителей, методистов и педагогических высших учебных заведений. М. Издательство «Флинта», 1998г.


Приложение 1.

Урок геометрии в 10 классе.

Тема урока: «Параллельность прямой и плоскости».

Цели урока:

1. введение понятия параллельности прямой и плоскости;

2. введение признака параллельности прямой и плоскости и его доказательство.

Этап мотивации:

В начале урока ученикам предлагается рассмотреть все возможные случаи взаимного расположения прямой и плоскости в пространстве и привести примеры из окружающей нас действительности.

1. прямая лежит в плоскости (сформулируйте аксиому, в которой выражено свойство принадлежности прямой плоскости);

2. прямая и плоскость имеют только одну общую точку, то есть пересекаются;

3. прямая и плоскость не имеют ни одной общей точки.

Третий случай дает определение параллельности прямой и плоскости, попробуйте сформулировать его сами.

Определение: прямая и плоскость называются параллельными, если они не имеют общих точек.

Примеры:

· натянутые троллейбусные провода параллельны плоскости земли;

· линия пересечения стены и потолка параллельна плоскости пола, эта же линия параллельна плоскости стола.

Назовите различные пары прямых и плоскостей параллельных между собой на примере куба.

Далее идет изучение теоремы, сначала можно рассмотреть следующий пример: