Смекни!
smekni.com

Формирование познавательной потребности у учащихся средствами информационных технологий (стр. 9 из 17)

Для этого нами был проведен интегрированный урок.

Мотивируя применение интегрированных уроков необходимо отметить, что разнообразие занимательных форм (игры-путешествия, состязания, конкурсы, шарады, загадки) на уроках создаёт положительный эмоциональный фон деятельности, располагает к выполнению тех заданий, которые учащиеся считают трудными и непреодолимыми.

Творческие задания представляют собой один из путей, с помощью которого происходит у детей формирование познавательного интереса.

Познавательная деятельность учащихся в обучении, какой бы характер она не носила, какой бы активной она ни была, всегда должна направляться и организовываться учителем.

Тема: "Применение интеграла при решении физических задач" (см. приложение 1)

Цель: продолжить формирование умений самостоятельно в комплексе применять знания, умения и навыки, осуществлять их перенос в новые условия.

Задачи урока:

Обучающие: способствовать формированию знаний, умений по данной теме;

Развивающие: умственная деятельность (выполнять операции анализа, синтеза, делать выводы, выделять существенные признаки объектов);

Воспитательные: воспитывать умение организовать свою деятельность, формирование ценностной ориентации, мировоззрения.

Оборудование: компьютер, мультимедиа проектор, экран.

Содержание урока: данного урока нет в тематическом планировании, но нами предлагается использовать данную разработку изучении темы 7. Учащиеся знакомятся с примерами применения интеграла в физике и геометрии.

План урока:

1. Организация начала урока.

2. Постановка проблемы урока.

3. Актуализация ЗУН, необходимых для творческого применения знаний

4. Формирование новых понятий и способов действий

5. Обобщение и систематизация знаний и способов деятельности

6. Усвоение образца комплексного применения ЗУН

7. Применение знаний умений и навыков в новых условиях

8. Подведение итогов урока

Ход урока:

1.Организация начала урока.

2.Постановка проблемы урока. На прошлом уроке мы ознакомились с геометрическими задачами, которые решаются при помощи интеграла. Но интеграл применим не только в математике, другие области науки также используют его и сегодня мы с вами проверим это на примере такой науки как физика.

3.Актуализация ЗУН, необходимых для творческого применения знаний

Физические величины, вычисляемые с помощью интеграла, можно разделить на два типа, в зависимости от того, как они естественно определяются. К первому типу относятся "первичные" величины (длина пути, масса, количество электричества, количество теплоты и т. п.), т. е. такие величины, для которых другие, связанные с ними ("вторичные") величины (соответственно скорость, линейная плотность, величина тока, удельная теплоемкость и т. п.) определяются как производные этих величин. Ко второму типу относятся такие, которые определяются естественным образом как интегралы от "первичных" по отношению к ним величин (например, площадь, работа). Для первого типа величин интегральная формула для их вычисления может и должна быть доказана, опираясь на известное из предыдущего материала определение "вторичной" величины как производной от данной "первичной". Для второго типа интегральная формула появляется по определению.

4. Формирование новых понятий и способов действий

При введении понятия интеграла как предела интегральных сумм довольно наглядным и понятным для учащихся является пример задачи о давлении жидкости на стенку.

Задача. Бассейн высоты H наполнен водой. Вычислить давление воды на прямоугольную стенку бассейна с основанием прямоугольника, равным а.

Разделим высоту Н на n равных частей (Δh). Стенка разделится на "элементы". Так как кубометр воды весит тонну, то давление столба жидкости высоты hi м, имеющего сечение 1 м2, равно hi тоннам.

Давление же воды на элемент, находящийся на глубине hi, равно произведению hi на площадь элемента: hiaΔh. Обозначим произведение hiaчерез F(hi). Тогда величина давления на всю стенку приближенно равна

Pn≈ F1(h1)Δh1+…+Fn(hn) Δhn.

Данную сумму называют интегральной суммой функции F(h) на отрезке [0; H]. При этом предполагается, что функция F(h) непрерывна на отрезке [0; H] и может принимать любые значения. Если

и высоты "элементов" стремятся к нулю, то точное выражение суммы равно
. Его называют определенным интегралом от функции F(h) на отрезке [0; H] и обозначают
.

Далее понятие определенного интеграла обобщается на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b].

Рассмотрим несколько задач с физическими моделями, где интеграл определяется как приращение первообразной.

1. Задача о перемещении точки.

Пусть v=v(t) скорость прямолинейного движения точки, заданная на некотором промежутке времени [t1; t2]. При этом пусть v(t)>0. Как выразится длина пути, пройденного точкой за данный промежуток времени?[5]

Обозначим координату движущейся точки в момент t через S(t). Тогда, так как движение при v>0 происходит только в положительном направлении (или иначе, т. к. S(t) – функция возрастающая, ввиду того, что

), то искомое расстояние будет выражаться числом S(t2)-S(t1). С другой стороны S(t) есть первообразная функции v(t) (
). Таким образом вычисление длины пути, пройденного точкой за данный промежуток времени, сводится к отысканию первообразной S(t) функции v(t), т. е. к интегрированию функции v(t).

Разность S(t2)-S(t1) называют интегралом от функции v(t) на отрезке [t1; t2] и обозначают так:

.

2. Импульс силы.

Пусть на тело массой m в течение времени t действует какая-то сила F(t). Найти количество движения тела при заданной зависимости силы от времени за промежуток времени [t1; t2].

Как известно из физики второй закон Ньютона в импульсном представлении выражает уравнение

ΔР=FΔt.

Произведение P=mv(t) массы на скорость называется "количеством движения". Так как скорость тела зависит от времени, то за промежуток времени [t1; t2] искомое количество движения может быть найдено так: Р(t2)-Р(t1). С другой стороны Р(t) есть первообразная функции F(t). Таким образом вычисление количества движения тела за данный промежуток времени, сводится к отысканию первообразной Р(t) функции F(t).

Разность P(t2)-P(t1) называют интегралом от функции F(t) на отрезке [t1; t2] и обозначают так:

.

Величина

называется также "импульсом силы" за время [t1; t2]. Словесная формулировка результата: изменение количества движения равно импульсу силы.

3. Количество электричества.

Представим себе переменный ток, текущий по проводнику. Вычислим количество электричества, протекающего за интервал времени [a; b] через сечение проводника. Если бы сила не менялась со временем, то изменение количества электричества q равнялось бы произведению I(b-a). Пусть задан закон изменения I=I(t) в зависимости от времени. Тогда количество электричества, протекающего за интервал времени [a; b], равно q(b)-q(a). С другой стороны на малом промежутке времени можно считать силу тока постоянной и равной I(t), а dq=I(t)dt, следовательно, вычисление количества электричества за данный промежуток времени, сводится к отысканию первообразной функции I(t).

Разность q(b)-q(a) называют интегралом от функции I(t) на отрезке [a; b] и обозначают так:

.

Вытекание воды из сосуда

Данная задача проста и наглядна в своей постановке для учащихся.

Представим себе сосуд, из которого вытекает вода. В момент времени t поток воды вычисляется по формуле q=q(t). Найдем объем воды, вытекающей из сосуда за промежуток времени [t1; t2]. Объем воды, находящейся в сосуде, обозначим через V. Этот объем со временем меняется, т. е. V есть функция времени t.

Рассмотрим промежуток времени [t1; t2]. Очевидно, что за это время из сосуда вытечет V(t2)-V(t1) воды. С другой стороны, поток воды – это величина, характеризующая скорость изменения количества воды в сосуде, т.е. dV=q(t)dt. Следовательно, вычисление объема воды, вытекающей из сосуда за промежуток времени [t1; t2], сводится к отысканию первообразной функции q(t).

Разность V(t2)-V(t1) называют интегралом от функции q(t) на отрезке [t1; t2] и обозначают так:

.

Все вышерассмотренные модели – это наиболее часто встречающиеся в школьном курсе физики законы и формулы, поэтому они не требуют от учащихся дополнительных знаний по физике, а, следовательно, удовлетворяют как принципу научности, так и принципу доступности материала.

Зачетное занятие было проведено нами в форме обобщающего урока по теме "Первообразная. Интеграл", проведенный с помощью мультимедийной презентации.

Обобщающий урок по теме "Первообразная. Интеграл".