– Чим схожі і чим різняться задачі 8) і 9)? (Відстані однакові, а час зріс у 4 рази в задачі 9). Відповіді різні. Швидкість у задачі 9) у 4 рази зменшилася).
– Чому швидкість зменшилася у 4 рази у задачі 9)? (Ту саму відстань 240 км машина подолала за час у 4 рази довший, тобто рухалася у 4 рази повільніше, ніж у задачі 8).
– Чим схожі та чим різняться задачі 10) та 11)? (Швидкості однакові, а відстань більша у 3 рази в задачі 11).
Відповідь – час у задачі 11) зріс також у 3 рази).
– Як пояснити зміну у відповіді? (Якщо швидкість машини не змінилася, то утричі більшу відстань вона зможе подолати за утричі більший час).
Так пропедевтично учні ознайомлюються з прямо пропорційною залежністю між величинами, коли із збільшенням (зменшенням) однієї величини у кілька разів, друга величина збільшується (зменшується) у стільки ж разів, та з обернено пропорційною залежністю між величинами, коли із збільшенням (зменшенням) однієї величини у кілька разів, друга – зменшується (збільшується) у стільки ж разів.
Перед розв'язуванням задач на рух назустріч, в одному напрямку та у протилежних напрямках, корисно нагадати учням завдання з підручника, де потрібно за малюнками знайти, на скільки наближаються чи віддаляються тварини одна від одної за 1 с; за 1 хв. Потім, показуючи малюнки тварин або моделі машин, чи викликавши двох учнів до дошки, учитель демонструє зустрічний рух тіл, або рух у протилежних напрямках, в одному напрямку.
Доцільно запитати у школярів, які дозволені швидкості машин у межах міста; чи може «Таврія» наздогнати «Ладу»; коли швидше віддаляється автомобіль від автобуса, якщо вони починають рухатися з одного пункту в одному напрямку чи в різних, чому так… Проводячи бесіди про безпеку руху, вчитель запрошує батьків-водіїв, щоб вони розповіли дітям про різні випадки зі свого досвіду, як слід враховувати безпечні швидкості машин під час ожеледиці, мряки тощо [15, 19].
На уроках математики вчитель, використовуючи машини-іграшки, підводить дітей до висновку, що коли машини одночасно починають рухатися з одного пункту в протилежних напрямках, то сума їх швидкостей буде швидкістю віддалення. Якщо ж машини рухаються по прямому шляху назустріч, то сума їх швидкостей буде швидкістю зближення.
Після складання відповідних задач вчитель одразу має пояснити, як записувати умову у вигляді графічної схеми, як можна розв'язати задачі двома способами, виявити з учнями більш раціональний спосіб. За задачами проводяться бесіди [24, 78].
Подібні бесіди необхідні також під час першого ознайомлення із задачами на рух у протилежних напрямках та в одному напрямку. Надалі учні зможуть розв'язувати задачі самі з неповним аналізом, називаючи лише те, що потрібно знайти для відповіді на запитання задачі.
Корисно, щоб учитель привчив дітей робити схеми аналітичного або синтетичного способу розбору задач, хоча це не належить до обов'язкових умінь, наведених у програмі з математики для 1–4 класів.
2. Формування умінь учнів розв’язувати задачі на рух
2.1 Аналіз системи задач на рух у початковому курсі математики
Вивчення всіх питань програми з математики пов'язане з розв'язуванням арифметичних задач. З одного боку, вони є важливим засобом формування в учнів математичних понять, запобігаючи формалізму у їх засвоєнні, а з другого боку, посилюють розвивальний ефект вивчення математики, впливаючи на розвиток математичного мислення учнів і їх оволодіння загальними прийомами міркування.
Через задачі передбачається засвоєння елементів арифметичної теорії; зміст арифметичних дій, властивості арифметичних дій взаємозв'язок між результатом і компонентами арифметичних дій, кількісні відношення між числами. За допомогою задач формується уявлення про величини, їх одиниці зв'язок між величинами. Окремою групою виступають задачі з величинами: ціна, кількість, вартість; час, швидкість, відстань; довжина, ширина, площа. Ці задачі сприяють усвідомленню пропорційної залежності між величинами, розширюють пізнавальний досвід дітей, допомагають застосовувати здобуті знання в практичній діяльності [20, 51].
Формування навичок розв’язувати задачі зводиться до планомірного і систематичного опрацювання тих окремих умінь, з яких складається загальне уміння – розв'язувати задачу. Тут передбачено формування вмінь слухати задачу, повторити її детально або своїми словами, визначити відомі і невідомі величини, проаналізувати зміст задачі, зобразити задачу у вигляді малюнка, схеми, правильно здійснити вибір дії для розв'язування задачі та обґрунтувати її, розв'язати задачу, зробивши відповідні записи, перевірити правильність розв'язання.
Також у процесі розв’язування задачі формуються уміння учнів правильно міркувати, висловлювати обґрунтовані судження під час розв'язання задачі і вибору відповідної дії розв'язання. Поряд із розв'язуванням готових задач передбачено навчання учнів складати задачі (за малюнком, за виразом, за коротким записом, за таблицею, за схемою, тощо).
Добір і розподіл задач за класами у програмі з математики здійснено з урахуванням доступності та доцільності для оволодіння математичним змістом. У програмі розроблено відповідні вимоги до кінцевих навчальних результатів згідно з визначеними основними функціями задач.
Відповідно до програми, розробленої Л.І. Кочиною та Н. Листопад [28], у 4 класі учні вивчають складені задачі на 2–4 дії, удосконалюють загальні прийоми розв'язування задач. При цьому учень розв'язує прості задачі на знаходження швидкості руху, відстані, часу; розв'язує задачі на знаходження середнього арифметичного; розв'язує задачі на пропорційне ділення; розв'язує задачі на знаходження невідомого за двома різницями; розв'язує задачі на 2–4 дії, що по-різному скомбіновані із простих задач вивчених видів; уміє складати план розв'язування складеної задачі; записує розв'язання задачі з поясненням і без пояснення; складає задачі за даним рівнянням і виразом; складає вирази для розв'язування задач з буквеними даними. Всі ці етапи та особливості стосуються і розв’язування задач на рух.
У школярів середніх та старших класів виникають чималі труднощі під час розв'язування задач на рух. Однією з причин цього ми вважаємо недостатню сформованість у початкових класах понять про величини: час, відстань, швидкість та пропорційну їх залежність. У молодших школярів необхідні поняття можливо формувати як на матеріалі чинних підручників початкових класів, так і доповнюючи його задачами, складеними на підґрунті типових задач, призначених для учнів середніх класів.
Оскільки предметом дослідження в цій роботі є задачі на рух, то розглянемо, як на практиці використовуються такі задачі вчителями початкових класів. Як відомо, задачі на рух запроваджуються у 4 класі. Вчителі початкових класів, знаючи методику роботи над задачами на рух, далеко не завжди можуть досягнути позитивних результатів у практиці своєї роботи. Причин, які пояснюють даний факт, є декілька.
Вивчаючи це питання, ми провели опитування у школах Тернопільської області. Шляхом спостереження, анкетування, бесід з учителями та учнями ми намагалися з’ясувати стан використання задач на рух в початковій школі, дослідити можливості їх впливу на розвиток учнів, з’ясувати питання готовності вчителів і учнів працювати з такими задачами і причини, що цьому заважають.
Нас цікавили питання:
1) чи вважають учителі доцільним розв’язування задач на рух;
2) чи вважають вони достатньою кількість таких задач, що подані у підручнику для 4 класу;
3) чи відчувають учителі труднощі у розв’язуванні і поясненні учням задач на рух;
4) в якій формі (індивідуальній, фронтальній) організовують роботу з цими задачами;
5) які методи застосовують під час роботи;
6) чи надають допомогу на уроці учням, які виконують завдання самостійно;
7) яка категорія дітей працює самостійно над задачами на рух;
8) яке значення мають такі задачі для учнів початкової школи.
Результати анкетування показали, що фактично усі вчителі початкових класів вважають доцільним і навіть необхідним розв’язування задач на рух (і надають їм великого значення). Адже, на думку вчителів, такі задачі будуть високоефективними у перспективі, оскільки вміння розв’язувати задачі на рух є необхідною умовою особистісного та суспільного розвитку людини.
Основна маса опитаних учителів вважає, що у підручнику з математики для 4 класу кількість задач на рух є недостатньою для досягнення бажаних результатів. Не досить досвідчені учителі відчувають деякі труднощі при поясненні учням особливостей задач на рух. Класоводи надають допомогу учням, які виконують завдання самостійно, а це означає, що недостатньо проведено роботи над задачами або використана досить мала кількість вправ і завдань, і, нарешті, через незнання методики роботи над задачами на рух.
Таким чином, проведений аналіз засвідчує, що в практиці початкової школи проблема використання задач на рух має певні відображення. В роботі над цими задачами і вчителі, і учні відчувають труднощі і потребують методичної допомоги.
Особливий тип задач, які містять опис процесу руху двох тіл, що переміщуються в одному чи різних напрямках, називають задачами на рух. Ці задачі вводяться для опрацювання у 4 класі.
У підручнику з математики для 4 класу спочатку вводяться прості задачі на рух, далі – складені, і нарешті – задачі з типовим конкретним сюжетом: 1) задачі на зустрічний рух; 2) задачі на рух у протилежних напрямках; 3) задачі на рух в одному напрямку. Вивчення задач цього виду є засобом формування у молодших школярів поняття руху, його різновидів та напрямків, а також понять «швидкість», «час» і «відстань». Розв'язуванню задач на рух передує тривала робота з розв'язування простих та складених задач на знаходження швидкості, часу та відстані.