Якщо остання задача схожа за своєю сутністю з тими, що є у досвіді суб'єкта, то вона підводиться під певний тип, а далі, як пишуть Дж.Міллер, Ю.Галантер, К.Прібрам, досліджуючи значення планування в інтелектуальній діяльності, розв'язується за систематичним планом, тобто за алгоритмом [51, 74]. Отже, цей спосіб розв'язання задачі ґрунтується на згадуванні про спосіб розв'язку подібних задач, про дії, які використовували для їх перетворення. Цей шлях надійний, але може бути тривалим.
Альтернативним способом може бути евристичний шлях, тобто така діяльність суб'єкта, яка дає змогу розв'язати нетипову задачу. Евристичними є „доцільні прийоми, які суб'єкт виробив у процесі розв'язання задачі і які здатний свідомо переносити на інші задачі. Наука, що вивчає закономірності евристичної діяльності людини, називається евристикою. Евристична діяльність відрізняється від алгоритмізованої тим, що вона не шукає готової схеми дій для розв'язання задачі, а створює нову схему дій (новий спосіб)” [59, 167].
Процес розв'язання задачі залежить від установки. Як оперативні компоненти до цього процесу входять сприймання, уявлення, поняття, судження, умовиводи, міркування, емоційні та вольові компоненти. Отже, у процесі розв'язання задач актуалізуються всі психічні сили людини. Особливо важливу роль у цьому процесі відіграють розумові дії.
Істотний вплив на ефективність розв'язування задач мають ставлення суб'єкта до цієї діяльності, його установки [54]. Установка виявляється як стан змобілізованості, готовності до дії, тому є механізмом регуляції мисленнєвої діяльності, формою спрямованості на розв'язування конкретної задачі. Виникнення установки залежить від наявності потреби в розв'язанні задач та від особливостей ситуації задоволення цієї потреби. А тому готовність до розв'язування задачі виникатиме тоді, коли діє підсилена мотивація, коли суб'єкт уже досяг колись успіху в цій діяльності й відчуває щодо неї свою адекватність.
Уміння розв’язувати текстові задачі виробляються ефективно, якщо:
1) подавати повну орієнтовну основу дій;
2) при первинному поясненні розгорнуто подавати зразок розв’язування задачі з фіксацією складових операцій;
3) опрацьовувати виконання окремих дій, які входять до складу загального вміння шляхом розв’язання спеціальних вправ;
4) використовувати різні види моделей задачної ситуації;
5) забезпечувати різні види діяльності (репродуктивну, продуктивну, творчу) та тривалість процесу формування вміння [66, 41].
Отже, у початкових класах учні ознайомлюються із різновидами арифметичних задач. Вивчення задач різних видів є важливим засобом формування у молодших школярів математичних уявлень і понять. Усвідомлення їх є важливим як для практично-життєвої підготовки учнів, так і для подальшого засвоєння математичних знань у середніх класах.
1.2 Проблема формування вмінь у другокласників розв’язувати складені задачі
Традиційно ознайомлення з поняттям “складена задача” здійснюється в 2-му класі на задачах на знаходження остачі, й ці задачі пропонуються учням майже протягом усієї теми. Але учні запам’ятовують спосіб розв’язування і при розв’язуванні нової задачі наслідують його, не звертаючись до розгорнених міркувань. Тому „ознайомлення з поняттям “складена задача” та процесом її розв’язування проводиться на різноманітних математичних структурах задач” [20, 28]. Такий підхід спонукає учнів до засвоєння дій з розв’язування задачі, а не до заучування плану розв’язування.
Складені арифметичні задачі відіграють важливу роль у навчанні дітей тих загальних прийомів розумової діяльності, які необхідні для розв’язання будь-якої задачі: а) аналізувати, виділити відоме і невідоме; б) встановлювати зв’язки між даними і шуканим; в) складати план розв’язування; г) перекладати залежності між даними і шуканим, сформульовані в задачі словами, на мову математичних виразів, рівностей, рівнянь; д) виконувати відповідні дії (розв’язувати відповідні рівняння) і знаходити відповідь на запитання задачі; е) перевіряти розв’язання [12, 71].
Однією з функцій складених задач є „розвиток здобутих знань, удосконалення їх у процесі застосування в змінених умовах” [44, 25]. Але складені сюжетні задачі, введено в початковий курс математики не лише для цього. Одна з їх функцій – навчити дітей “перекладу” словесно заданих відношень і зв’язків між різними величинами, числами, на мову математичних виразів, рівностей, рівнянь. Цій меті підпорядковані і добір задач, і система їх розміщення в часі, і методика роботи над ними.
Ця система забезпечує поступовий перехід від простого до дедалі складнішого: від складання простих виразів і рівнянь у процесі розв’язання задач на одну дію до складання виразів з 2-3 діями при розв’язуванні досить легких за структурою складених задач. Поступове наростання труднощів у таких вправах можливе тільки тоді, коли вчитель розуміючи завдання, що стоять перед ним, використовуватиме для цього пропоновані вправи з підручника.
Складені задачі використовуються під час ознайомлення з деякими новими поняттями, новими випадками дій, вони допомагають дітям усвідомити нові для них поняття дробу числа й інші питання курсу.
Складені задачі використовують і як наочну конкретну основу для розгляду нових понять, властивостей дій. Цією функцією визначається їх місце у загальній системі курсу: вони „вводяться тоді, коли розглядаються відповідні питання, і в такій кількості, яка потрібна для пояснення нових питань. При цьому спеціальної мети навчити дітей розв’язувати задачі двома способами не ставиться. Важливіше, щоб вони могли розв’язати її раціональним способом” [1, 21].
Інша група складених задач, що займають велике місце в підручниках для початкових класів школи, пов’язана з роботою над різними кількісними відношеннями. Такі задачі вводяться після того, як діти достатньо засвоять кількісні відношення і навчаться застосовувати свої знання під час розв’язування простих задач, які містять слова “на стільки-то (у стільки-то разів) більше (менше)” в різному контексті.
Складені задачі дають можливість продовжити і розширити та поглибити роботу, спрямовану на ознайомлення дітей з різними величинами і залежністю між ними. Група складених задач, пов’язаних з необхідністю застосувати знання зв’язку між такими величинами, як ціна, кількість, вартість, займає важливе місце в підручниках для всіх чотирьох класів [20, 29].
Застосовуючи до складених сюжетних задач алгебраїчний метод розв'язування, можна поділити їх на дві категорії. Поділ сюжетних задач на дві категорії надто широкий, але в ньому є певний практичний сенс. До першої групи віднесемо задачі на 2 дії, а до другої — на 3 і 4 дії. Такий поділ пояснюється тим, що вироблення вмінь розв'язувати задачі на 3 і більше дій спирається не тільки на знання видів простих задач і залежностей між величинами, а й на вміння учнів розв'язувати задачі на 2 дії. Часто задачі на 2 дії є «блоками», з яких складається розв'язування задач на 3 і більше дій.
Складені задачі поділяють за кількістю дій, якою розв’язується та чи інша задача. Це задача на дві, три, чотири дії. Трьома діями розв’язуються задачі, які утворилися розширенням задач на дві дії; також до цього типу належать також задачі на знаходження суми двох добутків, різниці двох добутків, різниці двох часток і т. ін. [37, 45].
Формування поняття про складену задачу та ознайомлення з процесом розв’язування складених задач здійснюється за допомогою порівняння задачі з двома запитаннями та відповідної складеної задачі; порівняння простої та складеної задач, які мають однакові умови; вибору необхідних і достатніх ознак для розпізнавання складеної задачі; підведення під поняття “складена задача”; виведення наслідків про належність або неналежність задачі до поняття “складена задача”.
Спеціально опрацьовується уміння виконувати аналітичний пошук розв’язування задачі – спочатку до задач подаються готові схеми аналізу, потім – діти повинні самостійно заповнити схему аналізу на картці з друкованою основою, а далі складають її самі. Аналогічно формується вміння розбивати складену задачу на прості та визначати порядок розв’язування простих задач.
Істотним в організації діяльності учнів на етапі ознайомлення з поняттям “складена задача” є її спрямованість не на розв’язання кожної конкретної задачі, а на оволодіння комплексом умінь, на оволодіння цим поняттям [44, 28].
На підставі визначених теоретичних основ нами удосконалена методика формування загального уміння розв’язувати складені задачі, в якій визначено мету і зміст кожного з зазначених етапів. На відміну від чинних підручників, ми пропонуємо проводити цілеспрямовану підготовку до введення поняття про складену задачу. На етапі підготовчої роботи засобом спеціальних завдань у дітей формуються уявлення: про те, що за двома певними числовими даними можна відповісти на кілька запитань; різні задачі можуть мати однакові розв’язання; неможливість відповісти на запитання задачі, якщо числових даних бракує; про необхідність вибору числових даних для відповіді на запитання задачі; про існування задач, на запитання яких не можна відповісти одразу; про існування задач, що складаються з двох простих задач, які пов’язані за змістом; про те, що аналіз може складатися з двох циклів – кожний з яких відповідає певній з двох простих задач [46, 112].
Формування загального вміння розв’язувати складені задачі реалізується за допомогою систем навчальних задач для 2 класу. Навчання розв’язувати складені задачі доцільно здійснювати на різноманітних математичних структурах задач, не зосереджуючись на відпрацюванні розв’язання задачі певної структури. Істотним у методиці ознайомлення із задачами нової математичної структури є введення їх на основі або порівняння зі схожими простими задачами, або на основі продовження сюжету простої задачі, або на основі зміни запитання простої задачі до даної умови, або на основі зміни умови або запитання складеної задачі відомої математичної структури.