Смекни!
smekni.com

Интегрированные уроки по математике 7-9 класс (стр. 2 из 3)

Последовательность расположения тем курса алгебры VII-IX классов обеспечивает своевременную подготовку к изучению физики. При изучении, например, равноускоренного движения используются сведения о линейной функции (IX класс), при изучении электричества – сведения о прямой и обратной пропорциональной зависимости (VIII класс). Решение уравнений, неравенств подготавливает учащихся к восприятию важнейших понятий курса информатики (алгоритм, программа и др.). Аксиоматическое построение курса геометрии VII-IX классов создает базу для понимания учащимися логики построения любой научной теории, изучаемой в курсах физики, химии, биологии. Знания по геометрии широко применяются при изучении черчения. Технологии, астрономии, физики. Так, для изучения механики необходимо владение векторными и координатным методами, для изучения оптики – знаниями о свойствах симметрий в пространстве и т.д. Привлечение знаний о масштабе и географических координатах из курса физической географии, о графическом изображении сил, действующих по одной прямой, из курса физики VII класса позволяет на уроках математики наполнять конкретным содержанием геометрические абстракции. Применение компьютеров на уроках математики целесообразно для проведения визуальных исследований, математических опытов, создания «живых картин» (например, для изображения на экране процесса последовательного приближения к окружности правильных вписанных многоугольников), а также для вычислительных работ. Связи математики с черчением, физикой, основами информатики и вычислительной техники развивают у учащихся политехнические знания и умения, необходимые для современной конструкторской и технической деятельности.

Развитию экономического мышления учащихся способствуют задачи с экономической тематикой, связанные с технологией.

В программах и учебниках усиливается математизация курсов физики и химии, при изучении физики целенаправленно применяются понятия пропорции, вектора, производной, функций, графиков и др. Так, движение рассматривается как производная функции координаты от времени, а ускорение – как производная скорости от времени при равноускоренном движении.

2.1 Осуществление связи с математикой в обучении физике

Математические приемы в физике учитель использует весьма часто:

- для выражения законов в общей и точной форме;

- для вывода тех или иных закономерностей из некоторых теоретических предпосылок;

- для преобразований выведенных формул в другие;

- для нахождения таких величин, измерение которых непосредственно невозможно;

- при разнообразных расчетах и решении задач.

Математический язык при изучении физики неизбежен как средство изящнейшего выражения законов и кратчайшего выражения законов из опытных исследований, для теоретического обоснования ряда основных положений.

Математикой учителю широко приходится пользоваться при решении физических задач. С самого начала изучения курса физики учащиеся приучаются к пользованию математическими символами и к буквенным формулам. После изучения определенного курса математики учащиеся без труда воспринимают, что математическая формула служит для более краткой, сжатой записи соотношения между физическими величинами, а затем и для более удобного производства вычислений.

Конечно, учителю приходится приучать учащихся вкладывать в математические обозначения реальное содержание физического смысла.

В старших классах роль математики в преподавании физики значительно повышается. Здесь, наряду с экспериментальным изучением физических явлений, учитель физики может при исследовании физических явлений широко применять и математический анализ, поскольку это возможно по уровню математической подготовки учащихся.

Например, в курсе физики X класса при изучении темы «Гармонические колебания» учащиеся уже знают из курса алгебры за IX класс, как связаны между собой ускорение и координата, скорость и координата, т.е., что мгновенная скорость представляет собой производную координаты по времени, а ускорение – вторая производная координаты по времени.

Отсюда делается вывод: согласно этому уравнению при свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

Далее учитель опирается на математическое положение о том, что функция синус и косинус обладают тем свойством, что вторая производная функции пропорциональна самой функции, взятой с противоположным знаком. Значит, координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса. И отсюда дается определение гармонических колебаний. Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями. Затем гармонические колебания записываются с помощью косинуса и синуса. Смещение колеблющейся точки в любой момент времени:

2.2 Связь математики с черчением

Эти два предмета в школьном курсе занимаются изучением пространственных форм и пространственных отношений материального мира.

В объяснительной записке к программе по математике говорится, что целью изучения геометрии является ознакомление со свойствами фигур на плоскости, развитие пространственных представлений и пространственного воображения. Одновременно с этим должны приобретаться практические навыки и умения, куда относится и умение выполнять измерения и решать различные геометрические задачи практического характера. Эти же задачи, наряду с другими, решаются и в курсе черчения; необходимость связи в преподавании данных предметов обусловливается еще и тем, что и в геометрии, и в черчении школьники обучаются выполнению чертежей, что является задачей подготовки учащихся к практической деятельности. Кроме того, геометрия дает теоретические основы для черчения, а навыки построения, получаемые в процессе обучения по черчению, используются на уроках геометрии, Учителю черчения при изложении учебного материала надо чаще опираться на теоретические сведения, известные учащимся из курса геометрии, равно как и учителям геометрии следует больше обращать внимания на вопросы, связанные с построениями.

При графическом решении некоторых геометрических задач не следует ограничиваться лишь циркулем и линейкой, так как программа настоятельно требует, чтобы при обучении решению задач на построение применялись инструменты. Рациональное использование чертежных инструментов на уроках геометрии будет, с одной стороны, содействовать наиболее эффективному решению задач на построение, а с другой – выработке определенных навыков, которые могут быть применены на уроках черчения при выполнении чертежей. Для осуществления такой задачи надо, чтобы на уроках геометрии при построении перпендикулярных прямых применялся не один чертежный угольник, а угольник и линейка или два угольника.

Навыки и умения в решении основных задач на построение как на уроках геометрии, так и на уроках черчения.

На уроках геометрии изучаются и другие задачи, связанные с построением параллелограммов, ромбов, трапеций, касательных к окружности и т.д. Очень важно, чтобы все перечисленные задачи решались рациональными приемами, т.е. такими, которые применяются на уроках черчения и в практике работы конструкторских бюро. Решая данные задачи с помощью угольника и линейки, учитель экономит время, необходимое ему для более углубленного анализа, доказательства и исследования той или иной задачи.

Целесообразно, чтобы отдельные условности изображений, принятые в черчении, по возможности находили рациональное применение на уроках геометрии.

Здесь имеется в виду использование ГОСТов, связанных с линиями чертежа, шрифтом и нанесением размеров. Это способствует улучшению качества геометрических чертежей, делает их более совершенными и понятными. При решении задач на построение к учащимся следует предъявлять единые требования как на уроках черчения, так и на уроках математики.

На уроках черчения учащиеся закрепляют теоретические знания, вырабатывают вычислительные навыки, приобретают навыки конструирования.

2.3 Интегрированный урок по геометрии

Тема. Площади поверхностей геометрических тел

Цели:

1) закрепить знания теоретического материала на вычисление площади поверхностей многогранников путем проведения практической работы;

2) показать учащимся использование данного материала на уроках черчения и технологии.

Оборудование урока: набор многогранников (параллелепипеды, призмы, пирамиды), логарифмические линейки, угольники, ножницы, плотная бумага.

Содержание урока.

I .Подготовка учащихся к выполнению практической работы методом беседы.

1. Что принимается за площадь поверхности тела?

2. По каким данным можно найти площадь поверхности:

а) наклонного параллелепипеда,

б) усеченной пирамиды?

3. Как наиболее рационально получить развертку наклонной призмы? Показать образец.

II. Сообщение учащимся плана выполнения работы.

1. Найти площадь поверхностей данного многогранника, выполнив наименьшее число измерений.

2. Рассчитать, сколько потребуется материала для изготовления этой модели, если на швы идет 3% всей площади поверхности, а потери составляют 10%.

3. Изготовить развертку модели данного многогранника.

III. Выполнение практической работы по предложенному плану с помощью инструктивных карт.

IV. Подведение итогов работы учащихся на уроке.

V. Рассказ учителя об использовании данного материала на уроках черчения, технологии. Показ образцов моделей, являющихся комбинацией геометрических тел.

VI. Домашнее задание: изготовить геометрическое тело, являющееся комбинацией двух геометрических многогранников, использовав для этого развертку многогранника, сделанную на данном уроке.