Смекни!
smekni.com

Методичний матеріал по викладанню алгебри (стр. 4 из 8)

Довести: x2 – x1 = x2΄ – x1΄, y2 – y1 = y2΄ – y1΄. (2)

y2 – y1 = y2΄ – y1΄. Довести: а = а'.

Доведення. Нехай паралельне пере- Доведення. Знайдеться паралельне, яке перенесення водить точку А1 в точку А1΄. Тоді , підставляємо

x΄ = x + c, d = y1΄ – y1.

y΄ = y + d; І

тому А΄1 переходить в А΄1 за допомогою паралельного перенесення:

переводить а в а΄, тобто x΄= x + x1΄ –x1, y΄= y1΄– y1.

x΄ = x1 + c, y1΄ = y1 + d, Ці рівності задовольняють координати точок А2 і А2΄ x΄2 = x2 + c΄, y2΄= y2 + d, звідси x2΄=x2+x1΄ –x1 , y2΄=y2 + y1΄– y1.З умови випливає що

x2΄ – x2΄ = x2 – x1, існує паралельне перенесення: А1 А1΄ і А2 А2

y2΄ – y΄2 = y2 – y1, що й, т. б. д. тобто вектори а й а рівні, що й т. б. д.

За допомогою кодоскопу (таблиці) показую скорочений запис прямої, і оберненої теореми:

a = a, де
a(x2 – x1; y2 – y1)
a΄ (x΄2 – x΄1; y΄2 – y΄1)
x2΄ – x1΄ = x2 – x1 y2΄ – y1΄ = y2 – y1
Після знайомства з доведенням учні можуть самі зробити висновок:

” Паралельне перенесення, що задається (1) або (2), переводить точку А1 в точку А΄1, а точку А2 – у точку А΄2, тобто вектори а і а΄ рівні. ”

Учням задаю запитання:

При якій умові вектори рівні? (Об’єднати пряме й обернене твердження).

Учні відповідають?

” Вектори рівні тоді і тільки тоді, коли рівні їхні відповідні координати”

ІІІ. Тренувальні вправи.

1. Учні самостійно розв’язують вправу 6 і 7 (§ 10 ), Розв’язки демонструю на кодоскопу. Учні звіряють і виправляють помилки.

IV. Підсумок уроку (закріплення).

Звертаю увагу учням на зв’язок координатної й геометричної форми завдання вектора, а також застосування формули абсолютної величини

|a|=

Показую на кодоскопу побудову вектора заданого коорди- натами, вибираючи при цьому його початок у різних точках.

Звертаю увагу ще раз учням на те, якщо вектор відкладений від точки О (початок координат), то його координати обов’язково співпадають із координатами його кінця. На кодоскопу демонструю завдання такого змісту:

1.

Відкласти вектор b (-1;3) від точки

а)(2;3); б)(-1;0); в)(0;0).


2 . Відкласти від початку координат вектори:


n(1;4) a(-2;-5) k(2;0) q(0;-3).

V. Завдання додому. п. 93; зап. 8,9. № 4;5*.

УРОК – 4. Тема уроку. РОЗВ’ЯЗУВАННЯ ВПРАВ. САМОСТІЙНА РОБОТА

Мета уроку. Закріпити знання про вектори, які задані своїми коор- динатами у процесі розв’язування вправ.

Тип уроку. Урок творчого застосування знань і вдосконалення вмінь.

Знання, вміння, навички. Вміти застосовувати теоретичні знання і вміння при розв’язуванні вправ і набуті навичок для їх, практичного застосування.

Наочні посібники і ТЗН. 1) Кодоскоп; 2) кодопозитиви; 3) магнітна дошка з набором векторів.

ХІД УРОКУ

І. Перевірка домашнього завдання.

Пропоную учням звернути увагу на екран, на якому зображено алгоритм розв’язку вправ 6 і 7(§10). Домашнє завдання перевіряю за допомогою кодопозитивів. Учні виправляють помилки.

ІІ. Актуалізація опорних знань.

Демонструю на екран умови задач, які учні усно розв’язують.

1. Знайти координати вектора KM, якщо M(3;4), K(8;6).

2.

Чому дорівнює абсолютна величина вектора a(-4;3)?

3.

Дано точки A(5;-1), B(4;3), C(1;0), M(9;4) та М(0;4). Чи рівні вектори AB і CM ?

4.

Абсолютна величина вектора m(3;a) дорівнює 5. Знайти а.

[ 52 = 32 + a2 a2 = 25 – 9 = 16; | a | = 4; a1 = -4, a2 = 4 ]

ІІІ. Розв’язування задач.

Умови вправ можуть бути записані на кодоплівці або у вигляді таблиці.

1. Використовуючи означення координат вектора, доведіть, що чотирикутник з вершинами A(-2;5), B(2;3), C(8;6) D(4;8) – пара- лелограм.

2.

Дано трикутник ABC: A(0;-1), B(3;1), C(1;-2), AA1, BB1, CC1 – його медіани. Обчисліть координати векторів AA1, BB1, CC1.

[AA1(2;1/2), BB1(-5/2;-5/2), CC1(1/2;2)].

На екран демонструю алгоритм розв’язування вправи 2.

1) Шукаємо координати векторів AA, BB, CC

A1, B1,C1:

A1
A1 2;
;

B1
B1
;

C1
C1
;

2) Обчислюємо за формулами координати векторів AA1, BB1, CC1:

AA1 = 2 – 0;
= 2;
;