-3 – y = 3, y = - 6.
IV. Самостійна робота.
В – 1
1. Дано точки A(2;3), B(2;1), C(2;3), D(3;2).
Доведіть рівність векторів AB і CD. (4 б) 2. *Абсолютна величина вектора a(8;m) дорівнює 10. Знайдіть m.(5б)В – 2
1.
Дано три точки A(2;2) B(0;1) C(1;2). Знайдіть таку точку (x;y), щоб вектори AB і СВ були рівними. (4б)2. *Абсолютна величина b(n;8) дорівнює 15. Знайдіть n . (5б)
Розв’язок самостійної роботи учні перевіряють через кодоскоп (сильнішим учням даю виконувати роботу на кодоплівці) Перевіряю роботу на кодоплівці. За цей час йде взаємоперевірка: учні звіряють відповіді, можуть посперечатися, звертаються до мене зі спірними запитаннями. Після цього перевірка закінчується. На екран демонструється алгоритм розв’язку завдань двох варіантів розв’язаними сильнішими учнями. Учні виправляють помилки (перед цим обмінюються варіантами). Виставляють бали. Я роботи збираю уточнюю перевірку, яку робили учні і виставляю оцінки в в свій журнал. Учні, які не справилися з роботою або хочуть покращити оцінку можуть після уроків (або на наступному уроці) перездати.
Підсумовую роботу учнів.
V. Завдання додому. п. 93 (§10).
y
B C
O x
A D
Мал. 14
1. На мал. 14 ABCD – квадрат, сторона якого дорівнює 6. Знайдіть координати векторів: AB, BC, DA, AD, AC ,BD, OC, AD.
2.Дано три точки A(5;1), B(4;5), C(0;2). Знайдіть координати такої точки D, щоб вектори BC і AD були рівними.
УРОК – 5. Тема уроку. ДОДАВАННЯ ВЕКТОРІВ
Мета уроку. Сформулювати поняття суми векторів, ознайомитися з ” правилом трикутника ” при додаванні векторів.
Тип уроку. Урок засвоєння нових знань, Знання, вміння, навички. Знати означення суми двох векторів, уміти знаходити координати суми й різниці двох векторів заданих координатами, довести теорему 10.1, уміти розпізнавати на рисунку і будувати суму двох векторів за правилом трикутника заданих геометрично.
Наочні посібники і ТЗН. 1) Таблиця ” Суми векторів ”; 2) кодо- скоп; 3) кодопозитиви; 4) ” Вектори на площині ”.
ХІД УРОКУ
І. Перевірка засвоєння вивченого матеріалу.
За допомогою кодоскопу учні перевіряють домашнє завдання (впр. 1,2– урок 4).
ІІ. Актуалізація опорних знань.
Розв’язати задачі (усно). Демонструю поступово задачі й запитання на екран.1.
Знайти координати вектора АВ, якщо А(2;4), В(2;7).2. Чому дорівнює абсолютна величина вектора (-6;8)?
3. Які вектори називаються рівними?
4. Що таке нульовий вектор?
5. Що таке координати вектора?
yb
а
c
O x
Мал. 15
Демонструю на екран (мал. 15) координатну площину.
Пропоную учням намалювати координатну площину. Після цього на окремих плівках (учні бачать динаміку малюнка) демонструю побудову. Учні в зошиті зображують ці вектори.
Демонструю мал. 16.
Ставлю запитання:1)
Назвати координати векторів a, b, c (мал. 16). Учні роблять висновок: координати вектора с дорівнюють сумі одноймен них координат векторів a і b. yb
c
a
O x
Мал. 16
Учні в зошиті виконують мал. 16 і записують рівність:a (1;2) + b (3;1) = c(1+3;2+1).
Пропоную учням сформулювати означен
ня додавання векторів: ”Сумою векторів a і b з координатами a1,a2 і b1,b2 називається вектор c з координатами a1+b1, a2+b2 , тобтоПісля ознайомлення з означенням векторів пропоную учням таке
завдання:
Нехай a(5;3), b(4;1). Який вектор є сумою цих двох векторів? Розповідаю учням, що на практиці векторне додавання зустрічається досить часто. Наприклад, під вектором a(1;2) можна розуміти групу зошитів, яка складається з 1 зошита у лінійку і 2–у клітку, під векторомb(3;4) – групу зошитів, яка складається з 3 зошитів у лінійку і 4 – у клітку. Загальна кількість зошитів складатиметься з 4 зошитів у лінійку і
6 – у клітку. Тоді учні записують суму у вигляді:
a(5;3) + b(4;1) = c(9;4).
Увівши поняття суми векторів, задаю запитання учням:
Чи зміниться сума векторів:
b + a і a + b ?
Учні перевіряють і формулюють переставну властивість додавання векторів (аналогічно до алгебри), а також переконуються в тому, що координати їхні рівні.
Слід нагадати, що два вектори називаються протилежними, коли їхня сума дорівнює нульовому вектору: a + (-a) =0.IV. Закріплення матеріалу.
Пропоную декілька вправ: 1) Дано вектори a(2;3), b(-1;0),c(-2,-3).Знайдіть суму векторів a і b, a і c, b і c.Можливий запис:
a + b = (2;3) + (-1;0) = (1;3).Звертаю увагу учням на те, що сума векторів є вектор. Зауважую, що сумою векторів може бути і нульовий вектор, наприклад,
a(2;3) + c(-2;-3) = 0.
2)
Дано вектори a(-2;3), b(-1;-4), c(5;1). Перевірити властивості (самостійно з перевіркою):