Учні переконуються у правильності рівностей і в тому , що це випливає з необхідної і достатньої умови рівності векторів
a + b і b +a , a + (b +c) і (a +b) + c.3) Знайдіть абсолютну величину векторів
a + b, a(1;-4), b(-4;8),
a(10;7), b(2;-2).VI. Підсумок уроку.
Підсумовуючи урок, наголошую учням, що ми навчилися додавати вектори за їхніми координатами, а також із властивостями векторів (аналогічно до алгебри). Повідомляю, що ці властивості мають відповідно іншу назву: комутативну й асоціативну.
VI. Завдання додому. п. 94(§10); зап.10 – 13; № 8(2);збираю зошити для перевірки.
УРОК 6. Тема уроку. ДОДАВАННЯ ВЕКТОРІВ (продовження)
Мета уроку. Сформулювати й довести теорему 10.1, а також ознайомити з ” правилом трикутника ” при додаванні векторів.
Тип уроку. Урок засвоєння нових знань.
Знання, вміння, навички. Знати формулювання теореми 10.1; уміти будувати суму двох векторів за ”правилом трикутника” і ”правилом паралелограма” і застосовувати нові знання до розв’язування завдань.
Наочні посібники і ТЗН. 1) Кодоскоп; 2) кодопозитиви; 3) діафільм ”Вектори на площині”; 4) картки для проведення самостійної роботи.
ХІД УРОКУ
І. Перевірка завдання вивченого матеріалу.
Викликаю учнів (4 – 6) до дошки і даю їм картки із завданням, наприклад, такого змісту.1.
Дано вектори m (2;3), n(1;-1), k(2;-1). Знайти m + n; б) | m + k |; в) m + n = n + m; г) m + ( n + k ) = ( m + n ) +k.ІІ. Актуалізація опорних знань.
Решта учні розв’язують задачі (на пів усно) на кодоскопу. Поступово демонструю завдання на дошку-екран:1) Координати точок А(1;-3), В(2:3). Знайти координати вектора АВ.
2)
Знайти координати вектора с і абсолютну, якщо a(0;3), b(-4;0).3) Сформулювати правило додавання векторів.
4) Сформулювати властивості додавання векторів.
5) Які вектори називаються рівними?
ІІ. Вивчення нового матеріалу.
1. На дошку-екран демонструю мал. 18, за допомогою якого разом з учнями доводжу теорему.
A(x1;y1)
C(x3;y3)
B(x1;y1)
O x
Мал.18
Учні записують.
Дано: A(x1;y1), B(x2;y2), C(x3;y3) – довільні точки площини.Довести: AB + BC = AC (мал. 18).
Доведення. У процесі доведення задаю учням такі запитання:1) Знайти координати векторів AB, BC, AC.
Учні записують в зошитах ( інший учень на дошці або на кодоскопу):
AB ( x2 – x1; y2 – y1);
BC ( x3 – x2; y3 - y2 );
AC ( x3 – x1; y2 – y1).
1)
Знайти кординати вектора AB + BC.2) Пропоную учням порівняти кординати векторів AB + BC і AC та
зробити висновок. Учні роблять висновок і записують в зошиті рівність: AB + BC = AC, що й треба було довести.На закріплення пропоную учням перевірити, що теорема справедливадля таких випадків: 1) дані точки A, B, C лежать на прямій, що паралельна осі Ox і осі Oy; 2) дані точки мають кординати a(1;1); B(3;5), C(7;4).Учні самостійно виконують завдання і роблять висновок.
M K P
Мал.19
2. Записати і відмітити (мал. 19 вектор, який дорівнює: а) MN + NP;б) MP+PN, в) NP+PM;
Учні виконують відповідні малюнки і використовують ”правило трикутника”.
Демонструю мал. 215, 216 (за підручником).
p q kl
n c d
m
Мал. 20
Потім демонструю мал. 20 і пропоную виконати таке завдання : m+n, c+d k+l, p+q.
3. Розглядаю вправу №16 (§10, мал. 221, підручник)
Учні пригадують уроки фізики і коментують дії сил і розв’язуванні вправи які зображено на мал. 21.
[AOP= OPB = α, тому OB = OC sin α, отже, | F| = |P |sin α ]. FO
B
A
α C
Мал. 21
4. Демонструю побудову суми двох векторів за ”правилом паралелограма”.
План побудови.
1) Відкладаю від початку вектора а вектор b΄, яикй дорівнює вектору b.
ba
d
b
Мал. 22
2) На векторах а і b΄, як на сторонах будуємо паралелограм. 3) Провести із спільного початку векторів а і b΄ вектор d (діагональ паралелограма).d=a+b.