Реализовать начало урока по теме «твердое тело» можно с задания учащимся выделить из группы слов лишнее: лед, вода, чугун (вода). Таким образом, учитель вводит ребят в новый мир науки, знакомя с новой темой «Твердое тело». При изложении темы должны помнить о сочетание наук и искусств. При этом важна естественность такого сочетания. Последнее достигается, если при изложении материала учитывать множественность проявлений одного и того же явления и пользоваться основными положениями теории познания, то есть вначале встретиться и наблюдать явление. С учетом выше изложенного целесообразно организовать встречу с изучаемым явлением на проявлениях, отображенных в творениях лучших мастеров искусств. При введении в тему «Твердое тело» можно использовать слайды живописных картин Рериха, Сарьянова и др., скульптур Родена, Щадрина и т. д., использовав ЭВМ и ТСО с помощью которых организуется встреча с изучаемым явлением.
О твердом теле, как об устойчивом состоянии очень хорошо расскажут прекрасные древнегреческие скульптуры, созданные более 2.5 тысяч лет тому назад и с честью выдержавшие испытание временем.
К понятию твердого тела могут следующие примеры:
Мы живем на поверхности земли твердого тела – земного шара, в сооружениях, построенных из твердых тел, – домах. Орудия труда, машины также сделаны из твердых тел. Благодаря рисункам в пещерах мы можем узнать о прошлом. Памятники архитектуры, скульптуры также, изготовленные из различных видов твердого тела. Знать свойства твердых тел жизненно необходимо, каждому человеку независимо от вида профессии [26].
Рассказ о твердом теле можно продолжить с организации диалога:
Что вам известно о твердом теле из ранее изученного материала?
Как вы думаете, из чего состоят твердые тела?
Все эти вопросы задавали себе еще наши далекие предки (рис. 2).
Изложение материала учителем ведется с опорой на иллюстрацию (рис.2), которая наглядно позволяет понять, что твердое тело в частности железо в руках кузнеца легко меняет свою форму
X – середина XIII века. На Руси железо было известно еще ранним славянам. Самый старый метод обработки металла – это ковка. Сначала древние люди били колотушками губчатое железо в холодном состоянии, чтобы «выжать из него соки», т.е. удалить примеси. Затем они догадались нагревать металл и придавать ему нужную форму. В X – XI веках благодаря развитию металлургии и других ремесел у славян появились соха и плуг с железным лемехом. Трудоемкость процесса выделила кузнецов из общины и сделала из них первых ремесленников. Письменные источники не сохранили до нас технику ковки и основные технические приемы древнерусских кузнецов. Но исследование старинных кованых изделий позволяет историкам говорить о том, что древнерусским кузнецам были известны все важнейшие технические приемы: сварка, пробивание отверстий, кручение, клепка пластин, наваривание стальных лезвий и закалка стали. Мастера производили сварку железа, нагревая его до температуры 1500 град С, достижение которой определяли по искрам раскаленного добела металла. Зубилом пробивали отверстия в ушках для ушатов, лемехах для сох, мотыгах. Пробойником делали отверстия в ножницах, клещах, ключах, лодочных заклепках, на копьях (для скрепления с древком), на оковках лопат. Необходимо было держать клещами раскаленный кусок железа, что при небольших размерах тогдашних наковален было нелегко, держать и направлять зубило, бить по зубилу молотом. Железные котлы делали из нескольких больших пластин, края которых склепывались железными заклепками. Операция кручения железа применялась для создания винтов из четырехгранных стержней. Приведенный выше ассортимент кузнечных изделий исчерпывает весь крестьянский инвентарь, необходимых для постройки дома, сельского хозяйства, охоты и обороны. Древнерусские кузнецы X-XIII вв. владели всеми основными техническими приемами обработки железа и на целые столетия определили технический уровень деревенских кузниц. Древнерусские топоры претерпели значительное изменение и к X-XIII вв. обрели форму, близкую к современной. При раскопках древнерусских городов оказалось, что почти каждый городской дом был жилищем ремесленника. С начала существования Киевского государства они проявляли высокое мастерство ковки из железа и стали самых различных предметов – от тяжелого лемеха и шлема с узорчатым железным кружевом до тонких игл; стрел и клепаных миниатюрными заклепками кольчужных колец; оружие и бытовой инвентарь из курганов IX-X вв. Помимо кузнечного ремесла они владели слесарным и оружейным делом.
Начиная с IX-X вв. русские мастера для обработки железа применяли напильники. При помощи этого разнообразного инструмента, не отличающегося от оборудования современных кузниц, русские мастера готовили множество различных вещей: сельскохозяйственные орудия; инструменты для ремесленников; бытовые предметы; оружие, доспехи и сбруя. Культура растет, охватывая новые области и изобретая новые технические приемы [22].
Обобщая и систематизируя знания учащихся, учитель задает вопрос, переходя ко второй части поэтапного обучения:
Приведите примеры деформаций растяжения и сдвига?
При объяснении изучаемого материала, все используемые учителем-педагогом рисунки расположены на компьютере. Каждое изображение имеет свой номер и расположены в той последовательности, в которой они «появляются» во время изложения темы. При возможности можно показать виды деформаций твердых тел с опорой на программу «Открытая физика 2.5.» после беседы и обсуждения о древних кузнецах-булатах. В программе «Открытая физика 2.5» приводятся все необходимые изучаемые формулы, что позволяет повысить уровень понимания и запомнить эффективнее материал.
Объясняя тему, учитель должен плавно перейти от исторических знаний к современным научным знаниям. Для этого учитель обращается к графику кривой охлаждения железа. График позволяет проследить все шаги и охарактеризовать фазовые переходы [3].
Все тела преимущественно находятся в кристаллическом состоянии, а значит, имеют кристаллическую решетку. Например, крупинка поваренной соли имеет плоские грани, составляющие друг другу прямые углы.
На этом этапе эффективно задать вопрос следующего характера:
Что вы можете сказать о снежинках?
Например, кусок слюды (рис. 1) легко расслаивается в одном направлении на тонкие пластинки, а также расслаивается в одном направлении кристалл графита.
Рис.1
Следует помнить, что частицы в кристаллах плотно упакованы, так что расстояние между их центрами приблизительно равно размеру частиц. В изображении кристаллических решеток указывается только положение центров частиц.
В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества. Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl–, не объединенные попарно в молекулы NaCl. Такие кристаллы называются ионными [21].
Кристаллические решетки металлов часто имеют форму шестигранной призмы (цинк, магний), гранецентрированного куба (медь, золото) или объемно центрированного куба (железо).
Кристаллические структуры металлов имеют важную особенность. Положительно заряженные ионы металла, образующие кристаллическую решетку, удерживаются вблизи положений равновесия силами взаимодействия с «газом свободных электронов». Электронный газ образуется за счет одного или нескольких электронов, отданных каждым атомом. Свободные электроны способны блуждать по всему объему кристалла.
Третий этап
Урок, разработанный в контексте мировой культуры, позволяет учителю построить так структуру урока, что домашнее задание служит глубоким пониманием нового материала. Методика проверки может быть самой разнообразной.
Проверка домашнего задания. Опыт в домашних условиях.
Вам понадобятся кусок пластилина, стеариновая свеча и электрокамин. Поставьте пластилин и свечу на равных расстояниях от камина.
По прошествии некоторого времени часть стеарина расплавится (станет жидкостью), а часть – останется в виде твердого кусочка. Пластилин за то же время лишь немного размягчится. Еще через некоторое время весь стеарин расплавится, а пластилин – постепенно "разъедется" по поверхности стола, все более и более размягчаясь.
Учащиеся приходят самостоятельно к выводу, существуют тела, которые при плавлении не размягчаются, а из твердого состояния превращаются сразу в жидкость. Во время плавления таких тел всегда можно отделить жидкость от еще не расплавившейся (твердой) части тела. Эти тела – кристаллические. Существуют также твердые тела, которые при нагревании постепенно размягчаются, становятся все более текучими. Для таких тел невозможно указать температуру, при которой они превращаются в жидкость (плавятся). Примерами аморфных тел могут служить стекло, (рис. 11), различные затвердевшие смолы (янтарь), пластики и т.д.
Следующий этап демонстрация опыта.