Можно применять самые простейшие рисунки, в виде кружков, квадратов, треугольников, точек, полосок и т.д., обозначающих те предметы, о которых говорится в задаче.
Например: На блюде лежало 15 яблок: красных, зеленых и желтых. Красных – 5, желтых столько же, да еще одно. Сколько зеленых яблок лежало на блюде?
- Сколько яблок лежало на блюде? (15)
- Нарисуем 15 кружков. Каждый кружок означает одно яблоко (красное, желтое или зеленое), лежащее на блюде.
- Сколько лежало красных яблок? (5).
- Значит, из нарисованных 15 кружков закрасим красным карандашом 5 кружков.
- Каждый закрашенный кружок означает одно красное яблоко. Остальные яблоки – зеленые и желтые. Тогда о зеленых и желтых яблоках можно сказать, что их 15 без 5, т.е. 15-5.
Решение: 15-5=10 (я.) желтых и зеленых
- Сколько лежало желтых яблок? (столько же, сколько и красных, да еще одно).
- Значит, из незакрашенных кружков закрасим желтым карандашом 5 кружков да еще один.
- Каждый закрашенный кружок означает одно желтое яблоко. Остальные яблоки – зеленые. Тогда о зеленых яблоках можно сказать, что их 10 без 5 и 1, т.е. 10-5-1.
Решение: 10-5-1=4 (я.) зеленых.
Ответ: 4 зеленых яблока
При таком графическом изображении ученики пользуются пересчетом, как и при предметном моделировании. Такое графическое моделирование невозможно использовать при больших числовых данных. Поэтому лучше использовать такое графическое средство как чертеж. Иллюстрацию в виде чертежа целесообразно использовать при решении задач, в которых даны отношения значений величин (больше, меньше, столько же), а также при решении задач, связанных с движением. При этом надо соблюдать указанные в условии отношения: большее расстояние изображать большим отрезком. Чертеж наглядно иллюстрирует отношение значений величин, а в задачах на движение схематически изображает соответствующую ситуацию. Одно из чисел данных в задаче (число детей, число метров в материи) изображают отрезком и, используя данные в задаче соотношения этого числа и других чисел, изображают эти числа (в 2 раза больше, на 4 кг меньше) соответствующим отрезком.
Например, для рассмотренной задачи про яблоки, можно выполнить такой чертеж:
Иллюстрация только тогда поможет ученикам найти решение, когда её выполняют сами дети, поскольку только в этом случае они будут анализировать задачу сами.Дети могут установить связи между данными и искомым и выбрать соответствующее арифметическое действие только с помощью учителя. В этом случае учитель проводит специальную беседу, которая называется разбором задачи.Рассуждение можно строить двумя способами: идти от вопроса задачи к числовым данным или же от числовых данных идти к вопросу.
Чаще следует использовать первый способ рассуждения, так как при этом ученик должен иметь в виду не одно выделенное действие, а все решение в целом. При использовании второго способа разбора учитель прямо подводит их к выбору каждого действия. Кроме того, такое рассуждение может привести к выбору «лишних действий».
Разбор составной задачи заканчивается составлением плана решения – это объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку арифметических действий.
Третий этап деятельности учащихся по решению задачи – оформление решения. Ученики справляются с этим этапом достаточно хорошо. Если при разборе задачи и поиске решения использовался чертеж, то ошибок в записи решения бывает очень мало.
При решении некоторых видов задач необходима проверка решения. Бантова М.И., Царева С.Е., выделяют следующие виды проверок:
1.Прикидка ответа.
Применение этого способа проверки заключается в следующем: до решения или после него устанавливают, какое число получится в результате, большее или меньшее, чем данное в условии.
2.Решение задачи другим способом.
Этот способ проверки интересен тем, что является одним из средств повышения интереса к математике.
Царева С.Е. [31, с. 103] считает, что применение метода поиска нового способа решения - средство развития познавательного интереса, умения отстаивать свою точку зрения.
3.Установление соответствия между числами полученными и данными.
Обосновать правильность решения задачи можно с помощью арифметических действий и логических рассуждений о том, что, если считать полученный результат верным, то все отношения и зависимости между данными и искомыми задачи будут выполнены.
4.Составление и решение обратной задачи.
Составление обратной задачи и ее решение иногда является единственным способом проверки.
Этот вид проверки делает прочными знания об обратных связях.
Заключительным этапом в работе над задачей является работа после решения задачи. В методической литературе опубликовано немало статей (Царева С.В., Шикова Р.Н.), где описаны виды дополнительной работы над уже решенной задачей. На практике можно увидеть эффективность этих видов работы. К сожалению, пользоваться этими видами работы приходится мало, так как не разработана методика работы на этом этапе.
Многие авторы и методисты уделяют много внимания последнему этапу: работе с задачей после ее решения.
В методической литературе даются разные виды такой работы, но вот как научить детей преобразовывать задачи не говориться.
1.4. Уровни умения решать задачи
Исходя из того, что познавательная область является для процесса обучения главной, то для определения качества достижения целей важно такое понятие, как уровень усвоения. В современной педагогике в качестве показателей обученности определяют уровни усвоения знаний и умений, состояние видов активной деятельности ученика, обеспечивающих усвоение знаний.
Беспалько В.П. [4, с. 51] выделяет несколько последовательных уровней усвоения:
I уровень – репродуктивное узнавание (ученический).
Уровень усвоения новой информации, который позволяет учащемуся при повторном ее восприятии отличать правильное ее использование от неправильного.
Характеризуется алгоритмичностью деятельности или деятельностью по узнаванию. На этом уровне ученик не может понять и поставить самостоятельно цель, а значит, и осуществить все этапы познавательной деятельности. Он действует под влиянием учителя в соответствии с уже знакомым (заученным) алгоритмом действий.
II уровень – репродуктивное алгоритмическое действие (типовой).
Уровень усвоения информации (деятельности), при котором учащийся способен самостоятельно воспроизводить информацию, применять ее в разнообразных типовых случаях, не требующих создания никакой новой информации (например, типовые задачи).
Характеризуется репродуктивной алгоритмической деятельностью. Это шаг вперед, по сравнению с первым уровнем в отношении мотивации, целеполагания (принимается, предложенная учителем, цель), наблюдается общее понимание. Однако действия по-прежнему строятся по известному алгоритму.
III уровень – продуктивное эвристическое действие (эвристический).
Уровень усвоения информации, при котором учащийся способен самостоятельно воспроизводить и преобразовывать усвоенную информацию для обсуждения известных объектов изучения и продуцирования субъективно новой информации о них, для применения усвоенной информации в разнообразных нетиповых случаях, требующих создания новых методов действия.
Характерна продуктивная деятельность, создается новая ориентировочная основа действий, в отличие от предложенного алгоритма. Этот уровень обусловлен достаточно высокой мотивацией учебной деятельности и осознанным принятием цели. Наблюдается не просто понимание, а поиск существенных сторон явления. Учащиеся добывают субъективно новую информацию.
IV уровень – продуктивное творческое действие (творческий).
Уровень усвоения информации об объектах деятельности, при котором учащийся способен использовать ее для получения объективно новой информации в процессе нахождения и обсуждения новых свойств известных объектов; нахождения и исследования новых методов деятельности с объектами; нахождения новых объектов, свойств и качеств.
Характеризуется продуктивным действием творческого типа, в результате которого создается объективно новая ориентировочная основа действий, самостоятельно ставится цель деятельности, разрабатываются новые правила и т.д.
Умение решать задачи также может быть сформировано на разном уровне. На их основе мы разработали 4 типа задания:
1 тип задания - узнавание
Если в задаче заданы цель, ситуация и действия по ее решению, а от учащихся требуется дать заключение о соответствии всех трех компонентов в структуре задачи, это деятельность по узнаванию. Учащиеся могут ее выполнять только при повторном воспроизведении ранее усвоенной информации об объектах процессах или действиях с ними.
Например, дан текст «В лагерь приехали 2 группы детей по 9 человек в каждой. Сколько мальчиков приехало в лагерь, если девочек было 11 человек?»
Дано решение: 2 * 9 = 18 (ч) 18 – 11 =7 (д)
Соответствуют ли друг другу текст и решение? (да)
2 тип задания – типовое
Если в задаче заданы цель и ситуация, а от учащихся требуются ранее усвоенные действия по ее решению, это репродуктивное алгоритмическое действие. Учащиеся выполняют его, самостоятельно воспроизводя и применяя информацию о ранее усвоенной ориентировочной основе выполнения данного действия, то есть решают типовую задачу. Будем считать типовой задачей, если в ней:
1. одни и те же связи между величинами;
2. одинаковая модель решения.
Ученик должен решить типовую задачу.
Например, дана задача: «На экскурсию в музей пришли ребята. Их разделили на 4 группы по 5 человек в каждой. Сколько учеников пришло из школы, если из детского сада пришло 12 ребят?»
3 тип задания - реконструкция
Если в задаче задана цель, но не ясна ситуация, в которой цель может быть достигнута, от учащегося требуется дополнить (уточнить) ситуацию и применить ранее усвоенные действия для решения данной задачи, это продуктивная деятельность, выполняемая не по готовому алгоритму или правилу, а по созданному или преобразованному в ходе самого действия.