Щоб розв'язати просту задачу, учень повинен виділити в ній відоме й невідоме, а потім вибрати арифметичну дію чи скласти рівняння, за допомогою яких знайти невідоме. Для цього треба-перевести на математичну мову відношення між даними і шуканими величинами, про які йдеться в задачі, а це учень зможе зробити, якщо розумітиме конкретний зміст арифметичних дій, зміст дій у поняттях «збільшити», «на більше», а також знати зв’язки між компонентами і результатами дій.
Зміст арифметичних дій (в широкому розумінні), зв'язків між компонентами і результатами дій розкривають на основі відповідних операцій над множинами предметів, розв'язування прикладів, повідомлення правил тощо.
Наше дослідження присвячене роботі над задачами першої групи – це задачі на знаходження суми, остачі, добутку, на ділення. Задачі на знаходження суми й остачі — це перші задачі, з якими зустрічаються діти, а тому робота над ними пов'язана з додатковими труднощами: тут учні ознайомлюються, власне, із задачею та її частинами, а також із деякими загальними прийомами роботи над задачею [15, 71].
Отже, на сучасному етапі розбудови початкової математичної освіти розв’язування простих текстових задач у навчанні математики переслідує такі цілі: формування в учнів загального підходу, загальних умінь і здібностей розв’язання будь-яких задач; пізнання і більш глибоке оволодіння математичними поняттями, що вивчаються, і деякими загальнонауковими й загальножиттєвими поняттями; оволодіння поняттями моделі й моделювання і власне математичним моделюванням; розвиток мислення, кмітливості учнів, їх творчого потенціалу.
1.2 Психологічні особливості розвитку математичного мислення молодших школярів під час розв’язування простих задач
Одним із завдань навчання математиці у початкових класах є забезпечення рівня математичної культури, необхідного для повноцінної участі школярів у навчальній діяльності. Математика є унікальним засобом формування не тільки освітнього, а й розвиваючого та інтелектуального потенціалу особистості. Зокрема, перед педагогом постає проблема розвитку математичного мислення учнів, тобто теоретичного мислення, побудованого на об'єктах математики. Це є також важливим фактором успішного оволодіння молодшими школярами математичною наукою. У зв'язку з цим постають проблеми пошуку, визначення умов ефективного розвитку математичного мислення учнів початкових класів.
Одним із засобів розвитку інтелектуальної сфери школярів є задачі. Саме розв'язуванню задач приділяється значна частина навчального часу при вивченні математики в початковій школі. При цьому необхідно визначити сутність математичного мислення як психічного процесу, встановити взаємозв'язок між навчанням учнів розв'язувати математичні задачі та розвитком мислення. Це допоможе знайти такі методи і прийоми, організаційні форми навчання (серед яких можуть бути як традиційні, так і відносно нові), за яких в найбільшій мірі проявиться розвиваюча функція задач [37, 52].
Сам процес розв'язування задач за певної методики позитивно впливає на розумовий розвиток школярів, оскільки він потребує виконання розумових операцій: аналізу і синтезу, конкретизації і абстрагування, порівняння, узагальнення. Так, під час розв'язування будь-якої задачі учень виконує аналіз: відокремлює запитання від умови, виділяє дані і шукані числа; складаючи план розв'язання, він виконує синтез, користуючись при цьому конкретизацією (в думці «малює» умову задачі), а потім абстрагуванням (абстрагуючись від конкретної ситуації, вибирає арифметичні дії); внаслідок багаторазового розв'язання задач певного виду учень узагальнює знання зв'язків між даними і шуканим, чим узагальнюється спосіб розв'язування задач цього виду.
Мислення – це соціально обумовлений, нерозривно пов'язаний з мовою психічний процес пошуків та відкриття істотно нового, процес опосередкованого та узагальненого відображення дійсності у ході її аналізу та синтезу [4, 148-149]. Мислення виникає на основі практичної діяльності з чуттєвого пізнання і далеко виходить за його межі. Процес мислення в навчальній діяльності – це процес пізнання. Він будується за відомою у психології теорією пізнання, у якій умовно можна виділити наступні етапи:
1) сприймання (на основі чуттєвих органів);
2) осмислення;
3) узагальнення;
4) практичні дії [33, 217].
На основі найпростіших методів пізнання – словесних, наочних, практичних – відбувається процес навчального пізнання. Якщо необхідно цей процес ускладнити, наприклад, процес сприймання та осмислення будується на більш складній методиці проблемного (самостійного) вивчення, то в цьому випадку розумова діяльність максимально орієнтується на заключний етап – абстрактне пізнання (узагальнення).
Мислення є узагальненим відображенням дійсності. Це процес пошуку істотних ознак, властивостей предметів та явиш і зв'язків між ними, до того ж характеристик, спільних для однорідних явищ або предметів дійсності. Вирізнені найістотніші ознаки лежать в основі узагальнення, розкривають певну закономірність або тенденцію. Так, психологи, вивчаючи особливості сприйняття людиною дійсності, відкрили таку загальну закономірність, як константність [47, 20].
Мислення має дійовий, активний і цілеспрямований характер. Виникнення в індивіда відчуттів, сприймань зумовлене зовнішніми чинниками. Ці процеси виникають при безпосередній дії подразників на органи чуття, незалежно від бажань суб'єкта. Мислення, як правило, актуалізується і спрямовується сутністю та значущістю для суб'єкта проблеми [51, 32].
Для розв'язання проблем люди використовують історичний досвід, засвоюють знання, закріплені у слові. У процесі засвоєння знань розвивається і мислення. Отже, мислення є продуктом суспільно-історичного розвитку. Водночас розвиток мислення суб'єктів зумовлює суспільний поступ, виконує роль його детермінанти.
С.Л. Рубінштейн вважає, що основним предметом психологічного дослідження мислення виступає як процес, так і діяльність. П.Я. Гальперін писав, що психологія вивчає не просто мислення і не все мислення, а тільки процес орієнтування суб'єкта при розв'язуванні інтелектуальних задач. О.К. Тихомиров переконаний, що предметом психологічного дослідження мислення є види мислення.
Мислення, виконуючи будь-яку функцію (розуміння смислу тексту і розв'язування ситуацій, проблем, задач; утворення зв'язку загальної мети з кінцевою; осмислення своїх дій тощо), змінює вихідний зміст за допомогою різних операцій та прийомів. Діючи в такий спосіб, суб'єкт присвоює знання. робить їх своїми, трансформованими щодо зовнішніх. Тому варто вирізнити три боки, або компоненти, мисленнєвої діяльності: змістовий, функціонально-операційний і цілемотиваційний [36, 218].
Дослідження психологів показали, що для розвитку мислення учнів слід формувати у них узагальнені способи міркувань методом розв'язування цілої системи задач [4, 150]. Узагальнені способи розумової діяльності поділяються на групи алгоритмічного та евристичного типу. Формування способів розумової діяльності алгоритмічного типу – необхідна, але недостатня умова розвитку мислення. Вона необхідна тому, що сприяє удосконаленню репродуктивного мислення, є тим фондом знань, на основі яких учень може розв'язувати нові для нього завдання, опановувати більш складні способи розумової діяльності. Вона недостатня тому, що алгоритмічна діяльність не вичерпує творчого мислення.
До евристичних способів відносяться: виділення головного суттєвого в матеріалі, узагальнення, порівняння, конкретизація, абстрагування, різні види аналізу, аналогія, способи кодування та інше. Евристичні способи стимулюють пошук рішення нових проблем, відкриття для учнів нових знань. В шкільній практиці суттєвими і важливими є уміння порівнювати, виділяти головне в навчальному матеріалі, узагальнювати.
Ці три способи мислення виступають провідними, навколо яких і за допомогою яких групуються інші прийоми і способи розумової діяльності.
Як правило, коли кажуть про розвиток мислення у процесі навчання математики, то мають на увазі розвиток математичного мислення. Звичайно, це правильно: у процесі навчання математиці слід у першу чергу турбуватися не взагалі про розвиток мислення, а саме про розвиток математичного мислення [45, 74].
А.Я. Хінчин, відомий математик, що глибоко цікавився проблемами навчання математики, вказав на чотири характерні ознаки математичного мислення:
1) доведене до крайнощів домінування логічної схеми міркування;
2) лаконізм, свідоме прагнення завжди знаходити найкоротший логічний шлях досягнення мети, відкидання всього несумісного з досконалою аргументацією;
3) чітка розчленованість процесу аргументації;
4) скрупульозна точність символіки [17, 23-24].
Вивчення математики у початковій школі являє собою складний процес, основними цільовими компонентами якого є:
- засвоєння учнями системи математичних знань;
- оволодіння школярами певними математичними вміннями й навичками;
- розвиток мислення молодших школярів [9, 49].
Ще не так давно вважалось, що успішна реалізація першої та другої цілей математичної освіти автоматично приводить до успішної реалізації третьої цілі. Тобто вважалось, що розвиток математичного мислення відбувається у процесі навчання математики спонтанно. Це правильно лише частково, оскільки результати досліджень багатьох вітчизняних і зарубіжних психологів та дидактів показали, що математичне мислення є не лише одним із найважливіших компонентів процесу пізнавальної діяльності, але й таким компонентом, без цілеспрямованого розвитку якого неможливо досягнути ефективних результатів оволодіння математичною наукою.